ﻻ يوجد ملخص باللغة العربية
We report on the first observation of $gamma$ rays emitted from an $sd$-shell hypernucleus, $rm ^{19}_{Lambda}F$. The energy spacing between the ground state doublet, $1/2^{+}$ and $3/2^{+}$ states, of $rm ^{19}_{Lambda}F$ is determined to be $rm 315.5 pm 0.4 (stat) ^{+0.6}_{-0.5} (syst)~keV$ by measuring the $gamma$-ray energy from the $M1(3/2^{+} rightarrow 1/2^{+})$ transition. In addition, three $gamma$-ray peaks were observed and assigned as $E2(5/2^{+} rightarrow 1/2^{+})$, $E1(1/2^{-} rightarrow 1/2^{+})$, and $E1(1/2^{-} rightarrow 3/2^{+})$ transitions. The excitation energies of the $5/2^{+}$ and $1/2^{-}$ states are determined to be $rm 895.2 pm 0.3 (stat) pm 0.5 (syst)~keV$ and $rm 1265.6 pm 1.2 (stat) ^{+0.7}_{-0.5} (syst)~keV$, respectively. It is found that the ground state doublet spacing is well described by theoretical models based on existing $s$- and $p$-shell hypernuclear data.
Level structure of the $^{12}_{Lambda}$C hypernucleus was precisely determined by means of $gamma$-ray spectroscopy. We identified four $gamma$-ray transitions via the $^{12}$C$(pi^{+},K^{+}gamma)$ reaction using a germanium detector array, Hyperball
Bound-systems of $Xi^-$--$^{14}_{}{rm N}$ are studied via $Xi^-$ capture at rest followed by emission of a twin single-$Lambda$ hypernucleus in the emulsion detectors. Two events forming extremely deep $Xi^-$ bound states were obtained by analysis of
A set of high resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the Giant Dipole Resonance (GDR) in sd-shell nuclei. Understanding
Previous studies of proton and neutron spectra from Non-Mesonic Weak Decay of eight Lambda-Hypernuclei (A = 5-16) have been revisited. New values of the ratio of the two-nucleon and the one-proton induced decay widths, Gamma_2N/Gamma_p, are obtained
We extend the ab initio coupled-cluster effective interaction (CCEI) method to deformed open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a n