ﻻ يوجد ملخص باللغة العربية
Data on the reaction $gamma pto K^+Lambda$ from the CLAS experiments are used to derive the leading multipoles, $E_{0+}$, $M_{1-}$, $E_{1+}$, and $M_{1+}$, from the production threshold to 2180,MeV in 24 slices of the invariant mass. The four multipoles are determined without any constraints. The multipoles are fitted using a multichannel $L+P$ model which allows us to search for singularities and to extract the positions of poles on the complex energy plane in an almost model-independent method. The multipoles are also used as additional constraints in an energy-dependent analysis of a large body of pion and photo-induced reactions within the Bonn-Gatchina (BnGa) partial wave analysis. The study confirms the existence of poles due to nucleon resonances with spin-parity $J^P = 1/2^-; 1/2^+$, and $3/2^+$ in the region at about 1.9,GeV.
Evidence is reported for two nucleon resonances with spin-parity $J^P=1/2^-$ and $J^P=3/2^-$ at a mass just below 1.9,GeV. The evidence is derived from a coupled-channel analysis of a large number of pion and photo-produced reactions. The two resonan
The fragmentation resulting from peripheral Au + Au collisions at an incident energy of E = 35 MeV/nucleon is investigated. A power-law charge distribution, $A^{-tau}$ with $tau approx 2.2$, and an intermittency signal are observed for events selecte
We discuss the most effective energy range for charged particle induced reactions in a plasma environment at a given plasma temperature. The correspondence between the plasma temperature and the most effective energy should be modified from the one g
Results from a multi-channel partial wave analysis of elastic and inelastic $pi N$ and $gamma N$ induced reactions are presented. The analysis evidences the existence of a spin-quartet of nucleon resonances with total angular momenta $J^P=1/2^+,...,
We measured fragmentation cross sections produced using the primary beam of $^{86}$Kr at 64 MeV/nucleon on $^9$Be and $^{181}$Ta targets. The cross sections were obtained by integrating the momentum distributions of isotopes with 25<Z<36 measured usi