ﻻ يوجد ملخص باللغة العربية
By correlating time- and angle-resolved photoemission and time-resolved transverse- magneto- optical Kerr effect measurements, both at extreme ultraviolet wavelengths, we uncover the universal nature of the ultrafast photoinduced magnetic phase transition in Ni. This allows us to explain the ultrafast magnetic response of Ni at all laser fluences - from a small reduction of the magnetization at low laser fluences, to complete quenching at high laser fluences. Both probe methods exhibit the same demagnetization and recovery timescales. We further show that the ultrafast demagnetization in Ni is indeed a magnetic phase transition that is launched within 20 fs, followed by demagnetization of the material within ~200 fs, and subsequent recovery of the magnetization on timescales ranging from 500 fs to >70 ps. We also provide evidence of two competing channels with two distinct timescales in the recovery process, that suggest the presence of coexisting phases in the material.
The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed
The linear magneto-optical Kerr effect (MOKE) is often used to probe magnetism of ferromagnetic materials, but MOKE cannot be applied to collinear antiferromagnets (AFs) due to the cancellation of sub-lattice magnetization. Magneto-optical constants
The resonant magnetic reflectivity of Co/Mg multilayers around the Co L2,3 absorption edge is simulated then measured on a specifically designed sample. The dichroic signal is obtained when making the difference between the two reflectivities measure
The origin of the interfacial perpendicular magnetic anisotropy (PMA) induced in the ultrathin Fe layer on the Au(111) surface was examined using synchrotron-radiation-based M{o}ssbauer spectroscopy (MS), X-ray magnetic circular dichroism (XMCD), and
The excitation of surface plasmons in magnetic nano-structures can strongly influence their magneto-optical properties. Here, we use photoemission electron microscopy to map the spatial distribution of the electric near-field on a nano-patterned magn