ﻻ يوجد ملخص باللغة العربية
Landaus description of the excitations in a macroscopic system in terms of quasiparticles stands out as one of the highlights in quantum physics. It provides an accurate description of otherwise prohibitively complex many-body systems, and has led to the development of several key technologies. In this paper, we investigate theoretically the Landau effective interaction between quasiparticles, so-called Bose polarons, formed by impurity particles immersed in a Bose-Einstein condensate (BEC). In the limit of weak interactions between the impurities and the BEC, we derive rigorous results for the effective interaction. They show that it can be strong even for weak impurity-boson interaction, if the transferred momentum/energy between the quasiparticles is resonant with a sound mode in the BEC. We then develop a diagrammatic scheme to calculate the effective interaction for arbitrary coupling strengths, which recovers the correct weak coupling results. Using this, we show that the Landau effective interaction in general is significantly stronger than that between quasiparticles in a Fermi gas, mainly because a BEC is more compressible than a Fermi gas. The interaction is particularly large near the unitarity limit of the impurity-boson scattering, or when the quasiparticle momentum is close to the threshold for momentum relaxation in the BEC. Finally, we show how the Landau effective interaction leads to a sizeable shift of the quasiparticle energy with increasing impurity concentration, which should be detectable with present day experimental techniques.
We describe our experimental setup for creating stable Bose-Einstein condensates of Rb-85 with tunable interparticle interactions. We use sympathetic cooling with Rb-87 in two stages, initially in a tight Ioffe-Pritchard magnetic trap and subsequentl
We calculate the Bose-Einstein condensate (BEC) occupation statistics vs. the interparticle interaction in a dilute gas with a nonuniform condensate in a box trap within the Bogoliubov approach. The results are compared against the previously found B
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscilla
The presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition
We study topologically non-trivial excitations of a weakly interacting, spin-orbit coupled Bose-Einstein condensate in a two-dimensional square optical lattice, a system recently realized in experiment [W. Sun et al., Phys. Rev. Lett. 121, 150401 (20