ﻻ يوجد ملخص باللغة العربية
We present a comparison of nine galaxy formation models, eight semi-analytical and one halo occupation distribution model, run on the same underlying cold dark matter simulation (cosmological box of co-moving width 125$h^{-1}$ Mpc, with a dark-matter particle mass of $1.24times 10^9 h^{-1}$ Msun) and the same merger trees. While their free parameters have been calibrated to the same observational data sets using two approaches, they nevertheless retain some memory of any previous calibration that served as the starting point (especially for the manually-tuned models). For the first calibration, models reproduce the observed z = 0 galaxy stellar mass function (SMF) within 3-{sigma}. The second calibration extended the observational data to include the z = 2 SMF alongside the z~0 star formation rate function, cold gas mass and the black hole-bulge mass relation. Encapsulating the observed evolution of the SMF from z = 2 to z = 0 is found to be very hard within the context of the physics currently included in the models. We finally use our calibrated models to study the evolution of the stellar-to-halo mass (SHM) ratio. For all models we find that the peak value of the SHM relation decreases with redshift. However, the trends seen for the evolution of the peak position as well as the mean scatter in the SHM relation are rather weak and strongly model dependent. Both the calibration data sets and model results are publicly available.
We present a comparison of the observed evolving galaxy stellar mass functions with the predictions of eight semi-analytic models and one halo occupation distribution model. While most models are able to fit the data at low redshift, some of them str
Cosmic rays (CRs) with ~GeV energies can contribute significantly to the energy and pressure budget in the interstellar, circumgalactic, and intergalactic medium (ISM, CGM, IGM). Recent cosmological simulations have begun to explore these effects, bu
Recent observations have found that many $zsim 6$ quasar fields lack galaxies. This unexpected lack of galaxies may potentially be explained by quasar radiation feedback. In this paper I present a suite of 3D radiative transfer cosmological simulatio
We examine the effect of using different halo finders and merger tree building algorithms on galaxy properties predicted using the GALFORM semi-analytical model run on a high resolution, large volume dark matter simulation. The halo finders/tree buil
We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo-occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The par