ترغب بنشر مسار تعليمي؟ اضغط هنا

Smoothable Gorenstein points via marked schemes and double-generic initial ideals

85   0   0.0 ( 0 )
 نشر من قبل Cristina Bertone
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Over an infinite field $K$ with $mathrm{char}(K) eq 2,3$, we investigate smoothable Gorenstein $K$-points in a punctual Hilbert scheme from a new point of view, which is based on properties of double-generic initial ideals and of marked schemes. We obtain the following results: (i) points defined by graded Gorenstein $K$-algebras with Hilbert function $(1,7,7,1)$ are smoothable, in the further hypothesis that $K$ is algebraically closed; (ii) the Hilbert scheme $mathrm{Hilb}_{16}^7$ has at least three irreducible components. The properties of marked schemes give us a simple method to compute the Zariski tangent space to a Hilbert scheme at a given $K$-point, which is very useful in this context. Over an algebraically closed field of characteristic $0$, we also test our tools to find the already known result that points defined by graded Gorenstein $K$-algebras with Hilbert function $(1,5,5,1)$ are smoothable. In characteristic zero, all the results about smoothable points also hold for local Artin Gorenstein $K$-algebras.



قيم البحث

اقرأ أيضاً

Following the approach in the book Commutative Algebra, by D. Eisenbud, where the author describes the generic initial ideal by means of a suitable total order on the terms of an exterior power, we introduce first the generic initial extensor of a su bset of a Grassmannian and then the double-generic initial ideal of a so-called GL-stable subset of a Hilbert scheme. We discuss the features of these new notions and introduce also a partial order which gives another useful description of them. The double-generic initial ideals turn out to be the appropriate points to understand some geometric properties of a Hilbert scheme: they provide a necessary condition for a Borel ideal to correspond to a point of a given irreducible component, lower bounds for the number of irreducible components in a Hilbert scheme and the maximal Hilbert function in every irreducible component. Moreover, we prove that every isolated component having a smooth double-generic initial ideal is rational. As a byproduct, we prove that the Cohen-Macaulay locus of the Hilbert scheme parameterizing subschemes of codimension 2 is the union of open subsets isomorphic to affine spaces. This improves results by J. Fogarty (1968) and R. Treger (1989).
126 - A. Conca , E. De Negri , E. Gorla 2021
In this paper, we survey the theory of Cartwright-Sturmfels ideals. These are Z^n-graded ideals, whose multigraded generic initial ideal is radical. Cartwright-Sturmfels ideals have surprising properties, mostly stemming from the fact that their Hilb ert scheme only contains one Borel-fixed point. This has consequences, e.g., on their universal Groebner bases and on the family of their initial ideals. In this paper, we discuss several known classes of Cartwright-Sturmfels ideals and we find a new one. Among determinantal ideals of same-size minors of a matrix of variables and Schubert determinantal ideals, we are able to characterize those that are Cartwright-Sturmfels.
137 - Aldo Conca , Tim Roemer 2007
We study the behavior of generic initial ideals with respect to fibre products. In our main result we determine the generic initial ideal of the fibre product with respect to the reverse lexicographic order. As an application we compute the symmetric algebraic shifted complex of two disjoint simplicial complexes as was conjectured by Kalai. This result is the symmetric analogue of a theorem of Nevo who determined the exterior algebraic shifted complex of two disjoint simplicial complexes as predicted by Kalai.
Let I be either the ideal of maximal minors or the ideal of 2-minors of a row graded or column graded matrix of linear forms L. In two previous papers we showed that I is a Cartwright-Sturmfels ideal, that is, the multigraded generic initial ideal gi n(I) of I is radical (and essentially independent of the term order chosen). In this paper we describe generators and prime decomposition of gin(I) in terms of data related to the linear dependences among the row or columns of the submatrices of L. In the case of 2-minors we also give a closed formula for its multigraded Hilbert series.
We show that the reduction to positive characteristic of the multiplier ideal in the sense of de Fernex and Hacon agrees with the test ideal for infinitely many primes, assuming that the variety is numerically Q-Gorenstein. It follows, in particular, that this reduction property holds in dimension 2 for all normal surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا