ترغب بنشر مسار تعليمي؟ اضغط هنا

Chip-to-chip entanglement of transmon qubits using engineered measurement fields

74   0   0.0 ( 0 )
 نشر من قبل Christian Dickel
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While the on-chip processing power in circuit QED devices is growing rapidly, an open challenge is to establish high-fidelity quantum links between qubits on different chips. Here, we show entanglement between transmon qubits on different cQED chips with $49%$ concurrence and $73%$ Bell-state fidelity. We engineer a half-parity measurement by successively reflecting a coherent microwave field off two nearly-identical transmon-resonator systems. By ensuring the measured output field does not distinguish $vert 01 rangle$ from $vert 10 rangle$, unentangled superposition states are probabilistically projected onto entangled states in the odd-parity subspace. We use in-situ tunability and an additional weakly coupled driving field on the second resonator to overcome imperfect matching due to fabrication variations. To demonstrate the flexibility of this approach, we also produce an even-parity entangled state of similar quality, by engineering the matching of outputs for the $vert 00 rangle$ and $vert 11 rangle$ states. The protocol is characterized over a range of measurement strengths using quantum state tomography showing good agreement with a comprehensive theoretical model.



قيم البحث

اقرأ أيضاً

Significant progress has been made in building large-scale superconducting quantum processors based on flip-chip technology. In this work, we use the flip-chip technology to realize a modified transmon qubit, donated as the flipmon, whose large shunt capacitor is replaced by a vacuum-gap parallel plate capacitor. To further reduce the qubit footprint, we place one of the qubit pads and a single Josephson junction on the bottom chip and the other pad on the top chip which is galvanically connected with the single Josephson junction through an indium bump. The electric field participation ratio can arrive at nearly 53% in air when the vacuum-gap is about 5 microns, and thus potentially leading to a lower dielectric loss. The coherence times of the flipmons are measured in the range of 30-60 microseconds, which are comparable with that of traditional transmons with similar fabrication processes. The electric field simulation indicates that the metal-air interfaces participation ratio increases significantly and may dominate the qubits decoherence. This suggests that more careful surface treatment needs to be considered. No evidence shows that the indium bumps inside the flipmons cause significant decoherence. With well-designed geometry and good surface treatment, the coherence of the flipmons can be further improved.
Exploiting semiconductor fabrication techniques, natural carriers of quantum information such as atoms, electrons, and photons can be embedded in scalable integrated devices. Integrated optics provides a versatile platform for large-scale quantum inf ormation processing and transceiving with photons. Scaling up the integrated devices for quantum applications requires highperformance single-photon generation and photonic qubit-qubit entangling operations. However, previous demonstrations report major challenges in producing multiple bright, pure and identical single-photons, and entangling multiple photonic qubits with high fidelity. Another notable challenge is to noiselessly interface multiphoton sources and multiqubit operators in a single device. Here we demonstrate on-chip genuine multipartite entanglement and quantum teleportation in silicon, by coherently controlling an integrated network of microresonator nonlinear single-photon sources and linear-optic multiqubit entangling circuits. The microresonators are engineered to locally enhance the nonlinearity, producing multiple frequencyuncorrelated and indistinguishable single-photons, without requiring any spectral filtering. The multiqubit states are processed in a programmable linear circuit facilitating Bell-projection and fusion operation in a measurement-based manner. We benchmark key functionalities, such as intra-/inter-chip teleportation of quantum states, and generation of four-photon Greenberger-HorneZeilinger entangled states. The production, control, and transceiving of states are all achieved in micrometer-scale silicon chips, fabricated by complementary metal-oxide-semiconductor processes. Our work lays the groundwork for scalable on-chip multiphoton technologies for quantum computing and communication.
Experimental detection of entanglement in superconducting qubits has been mostly limited, for more than two qubits, to witness-based and related approaches that can certify the presence of some entanglement, but not rigorously quantify how much. Here we measure the entanglement of three- and four-qubit GHZ and linear cluster states prepared on the 16-qubit IBM Rueschlikon (ibmqx5) chip, by estimating their entanglement monotones. GHZ and cluster states not only have wide application in quantum computing, but also have the convenient property of having similar state preparation circuits and fidelities, allowing for a meaningful comparison of their degree of entanglement. We also measure the decay of the monotones with time, and find in the GHZ case that they actually oscillate, which we interpret as a drift in the relative phase between the $|0rangle^{otimes n}$ and $|1rangle^{otimes n}$ components, but not an oscillation in the actual entanglement. After experimentally correcting for this drift with virtual Z rotations we find that the GHZ states appear to be considerably more robust than cluster states, exhibiting higher fidelity and entanglement at later times. Our results contribute to the quantification and understanding of the strength and robustness of multi-qubit entanglement in the noisy environment of a superconducting quantum computer.
General purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realise composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits a nd are the most viable approach for constructing an all-photonic quantum computer. Here we propose and demonstrate an integrated silicon photonic architecture that both entangles multiple photons, and encodes multiple physical qubits on individual photons, to produce error-protected qubits. We realise reconfigurable graph states to compare several schemes with and without error-correction encodings and implement a range of quantum information processing tasks. We observe a success rate increase from 62.5% to 95.8% when running a phase estimation algorithm without and with error protection, respectively. Finally, we realise hypergraph states, which are a generalised class of resource states that offer protection against correlated errors. Our results show how quantum error-correction encodings can be implemented with resource-efficient photonic architectures to improve the performance of quantum algorithms.
Entanglement is a counterintuitive feature of quantum physics that is at the heart of quantum technology. High-dimensional quantum states offer unique advantages in various quantum information tasks. Integrated photonic chips have recently emerged as a leading platform for the generation, manipulation and detection of entangled photons. Here, we report a silicon photonic chip that uses novel interferometric resonance-enhanced photon-pair sources, spectral demultiplexers and high-dimensional reconfigurable circuitries to generate, manipulate and analyse path-entangled three-dimensional qutrit states. By minimizing on-chip electrical and thermal cross-talk, we obtain high-quality quantum interference with visibilities above 96.5% and a maximumly entangled qutrit state with a fidelity of 95.5%. We further explore the fundamental properties of entangled qutrits to test quantum nonlocality and contextuality, and to implement quantum simulations of graphs and high-precision optical phase measurements. Our work paves the path for the development of multiphoton high-dimensional quantum technologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا