ﻻ يوجد ملخص باللغة العربية
While the on-chip processing power in circuit QED devices is growing rapidly, an open challenge is to establish high-fidelity quantum links between qubits on different chips. Here, we show entanglement between transmon qubits on different cQED chips with $49%$ concurrence and $73%$ Bell-state fidelity. We engineer a half-parity measurement by successively reflecting a coherent microwave field off two nearly-identical transmon-resonator systems. By ensuring the measured output field does not distinguish $vert 01 rangle$ from $vert 10 rangle$, unentangled superposition states are probabilistically projected onto entangled states in the odd-parity subspace. We use in-situ tunability and an additional weakly coupled driving field on the second resonator to overcome imperfect matching due to fabrication variations. To demonstrate the flexibility of this approach, we also produce an even-parity entangled state of similar quality, by engineering the matching of outputs for the $vert 00 rangle$ and $vert 11 rangle$ states. The protocol is characterized over a range of measurement strengths using quantum state tomography showing good agreement with a comprehensive theoretical model.
Significant progress has been made in building large-scale superconducting quantum processors based on flip-chip technology. In this work, we use the flip-chip technology to realize a modified transmon qubit, donated as the flipmon, whose large shunt
Exploiting semiconductor fabrication techniques, natural carriers of quantum information such as atoms, electrons, and photons can be embedded in scalable integrated devices. Integrated optics provides a versatile platform for large-scale quantum inf
Experimental detection of entanglement in superconducting qubits has been mostly limited, for more than two qubits, to witness-based and related approaches that can certify the presence of some entanglement, but not rigorously quantify how much. Here
General purpose quantum computers can, in principle, entangle a number of noisy physical qubits to realise composite qubits protected against errors. Architectures for measurement-based quantum computing intrinsically support error-protected qubits a
Entanglement is a counterintuitive feature of quantum physics that is at the heart of quantum technology. High-dimensional quantum states offer unique advantages in various quantum information tasks. Integrated photonic chips have recently emerged as