ﻻ يوجد ملخص باللغة العربية
Fracton models, a collection of exotic gapped lattice Hamiltonians recently discovered in three spatial dimensions, contain some topological features: they support fractional bulk excitations (dubbed fractons), and a ground state degeneracy that is robust to local perturbations. However, because previous fracton models have only been defined and analyzed on a cubic lattice with periodic boundary conditions, it is unclear to what extent a notion of topology is applicable. In this paper, we demonstrate that the X-cube model, a prototypical type-I fracton model, can be defined on general three-dimensional manifolds. Our construction revolves around the notion of a singular compact total foliation of the spatial manifold, which constructs a lattice from intersecting stacks of parallel surfaces called leaves. We find that the ground state degeneracy depends on the topology of the leaves and the pattern of leaf intersections. We further show that such a dependence can be understood from a renormalization group transformation for the X-cube model, wherein the system size can be changed by adding or removing 2D layers of topological states. Our results lead to an improved definition of fracton phase and bring to the fore the topological nature of fracton orders.
Haah codes represent a singularly interesting gapped Hamiltonian schema that has resisted a natural generalization, although recent work shows that the closely related type I fracton models are more commonplace. These type I siblings of Haah codes ar
We introduce lattice gauge theories which describe three-dimensional, gapped quantum phases exhibiting the phenomenology of both conventional three-dimensional topological orders and fracton orders, starting from a finite group $G$, a choice of an Ab
We present a three-dimensional cubic lattice spin model, anisotropic in the $hat{z}$ direction, that exhibits fracton topological order. The latter is a novel type of topological order characterized by the presence of immobile pointlike excitations,
In this review article we describe the localization of three dimensional N=2 supersymmetric theories on compact manifolds, including the squashed sphere, S^3_b, the lens space, S^3_b/Z_p, and S^2 x S^1. We describe how to write supersymmetric actions
Fractional excitations in fracton models exhibit novel features not present in conventional topological phases: their mobility is constrained, there are an infinitude of types, and they bear an exotic sense of braiding. Hence, they require a new fram