ترغب بنشر مسار تعليمي؟ اضغط هنا

What can we learn on supernova neutrino spectra with water Cherenkov detectors?

49   0   0.0 ( 0 )
 نشر من قبل Andrea Gallo Rosso
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the precision with which the supernova neutrino spectra can be reconstructed in water Cherenkov detectors, in particular the large scale Hyper-Kamiokande and Super-Kamiokande. To this aim, we consider quasi-thermal neutrino spectra modified by the Mikheev-Smirnov-Wolfenstein effect for the case of normal ordering. We perform three 9 degrees of freedom likelihood analyses including first inverse-beta decay only, then the combination of inverse beta decay and elastic scattering on electrons and finally a third analysis that also includes neutral scattering neutrino-oxygen events. A tenth parameter is added in the analyses to account for the theoretical uncertainty on the neutral current neutrino-oxygen cross section. By assuming a 100% efficiency in Hyper-Kamiokande, we show that one can reconstruct the electron antineutrino average energy and pinching parameter with an accuracy of $sim2%$ and $sim7%$ percent respectively, while the antineutrino integrated luminosity can be pinned down at $sim3%$ percent level. As for the muon and tau neutrinos, the average energy and the integrated luminosity can be measured with $sim7%$ precision. These results represent a significant improvement with respect Super-Kamiokande, particularly for the pinching parameter defining the electron antineutrino spectra. As for electron neutrinos, the determination of the emission parameters requires the addition of supplementary detection channels.



قيم البحث

اقرأ أيضاً

Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.
Different from other multiple top-quark productions, triple top-quark production requires the presence of both flavor violating neutral interaction and flavor conserving neutral interaction. We describe the interaction of triple top-quarks and up-qua rk in terms of two dimension-6 operators; one can be induced by a new heavy vector resonance, the other by a scalar resonance. Combining same-sign top-quark pair production and four top-quark production, we explore the potential of the 13 TeV LHC on searching for the triple top-quark production.
We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where negative transfer between tasks is less likely. Our findings show considerable improvements for all tasks, particularly in the learning what to share setting, which shows consistent gains across all tasks.
Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in di agnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا