ترغب بنشر مسار تعليمي؟ اضغط هنا

A Probability Monad as the Colimit of Spaces of Finite Samples

248   0   0.0 ( 0 )
 نشر من قبل Paolo Perrone
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We define and study a probability monad on the category of complete metric spaces and short maps. It assigns to each space the space of Radon probability measures on it with finite first moment, equipped with the Kantorovich-Wasserstein distance. This monad is analogous to the Giry monad on the category of Polish spaces, and it extends a construction due to van Breugel for compact and for 1-bounded complete metric spaces. We prove that this Kantorovich monad arises from a colimit construction on finite power-like constructions, which formalizes the intuition that probability measures are limits of finite samples. The proof relies on a criterion for when an ordinary left Kan extension of lax monoidal functors is a monoidal Kan extension. The colimit characterization allows the development of integration theory and the treatment of measures on spaces of measures, without measure theory. We also show that the category of algebras of the Kantorovich monad is equivalent to the category of closed convex subsets of Banach spaces with short affine maps as morphisms.



قيم البحث

اقرأ أيضاً

In earlier work, we had introduced the Kantorovich probability monad on complete metric spaces, extending a construction due to van Breugel. Here we extend the Kantorovich monad further to a certain class of ordered metric spaces, by endowing the spa ces of probability measures with the usual stochastic order. It can be considered a metric analogue of the probabilistic powerdomain. The spaces we consider, which we call L-ordered, are spaces where the order satisfies a mild compatibility condition with the metric itself, rather than merely with the underlying topology. As we show, this is related to the theory of Lawvere metric spaces, in which the partial order structure is induced by the zero distances. We show that the algebras of the ordered Kantorovich monad are the closed convex subsets of Banach spaces equipped with a closed positive cone, with algebra morphisms given by the short and monotone affine maps. Considering the category of L-ordered metric spaces as a locally posetal 2-category, the lax and oplax algebra morphisms are exactly the concave and convex short maps, respectively. In the unordered case, we had identified the Wasserstein space as the colimit of the spaces of empirical distributions of finite sequences. We prove that this extends to the ordered setting as well by showing that the stochastic order arises by completing the order between the finite sequences, generalizing a recent result of Lawson. The proof holds on any metric space equipped with a closed partial order.
We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure , mutually compatible (i.e. a bimonoidal structure). If the underlying monoidal category is cartesian monoidal, a bimonoidal structure is given uniquely by a commutative strength. However, if the underlying monoidal category is not cartesian monoidal, a strength is not enough to guarantee all the desired properties of joints and marginals. A bimonoidal structure is then the correct requirement for the more general case. We explain the theory and the operational interpretation, with the help of the graphical calculus for monoidal categories. We give a definition of stochastic independence based on the bimonoidal structure, compatible with the intuition and with other approaches in the literature for cartesian monoidal categories. We then show as an example that the Kantorovich monad on the category of complete metric spaces is a bimonoidal monad for a non-cartesian monoidal structure.
We present a novel proof of de Finettis Theorem characterizing permutation-invariant probability measures of infinite sequences of variables, so-called exchangeable measures. The proof is phrased in the language of Markov categories, which provide an abstract categorical framework for probability and information flow. The diagrammatic and abstract nature of the arguments makes the proof intuitive and easy to follow. We also show how the usual measure-theoretic version of de Finettis Theorem for standard Borel spaces is an instance of this result.
We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of clo sed subsets equipped with the lower Vietoris topology. The second is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them, and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads from V to H. In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. Third, we show that V can be restricted to a submonad of tau-smooth probability measures on Top. By composing these two morphisms of monads, we obtain that taking the support of a tau-smooth probability measure is also a morphism of monads.
Markov categories are a recent categorical approach to the mathematical foundations of probability and statistics. Here, this approach is advanced by stating and proving equivalent conditions for second-order stochastic dominance, a widely used way o f comparing probability distributions by their spread. Furthermore, we lay foundation for the theory of comparing statistical experiments within Markov categories by stating and proving the classical Blackwell-Sherman-Stein Theorem. Our version not only offers new insight into the proof, but its abstract nature also makes the result more general, automatically specializing to the standard Blackwell-Sherman-Stein Theorem in measure-theoretic probability as well as a Bayesian version that involves prior-dependent garbling. Along the way, we define and characterize representable Markov categories, within which one can talk about Markov kernels to or from spaces of distributions. We do so by exploring the relation between Markov categories and Kleisli categories of probability monads.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا