ترغب بنشر مسار تعليمي؟ اضغط هنا

Derivation of higher-order terms in FFT-based numerical homogenization

94   0   0.0 ( 0 )
 نشر من قبل Felix Dietrich
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we first introduce the reader to the Basic Scheme of Moulinec and Suquet in the setting of quasi-static linear elasticity, which takes advantage of the fast Fourier transform on homogenized microstructures to accelerate otherwise time-consuming computations. By means of an asymptotic expansion, a hierarchy of linear problems is derived, whose solutions are looked at in detail. It is highlighted how these generalized homogenization problems depend on each other. We extend the Basic Scheme to fit this new problem class and give some numerical results for the first two problem orders.



قيم البحث

اقرأ أيضاً

104 - Zeyu Jin , Ruo Li 2021
We propose a high order numerical homogenization method for dissipative ordinary differential equations (ODEs) containing two time scales. Essentially, only first order homogenized model globally in time can be derived. To achieve a high order method , we have to adopt a numerical approach in the framework of the heterogeneous multiscale method (HMM). By a successively refined microscopic solver, the accuracy improvement up to arbitrary order is attained providing input data smooth enough. Based on the formulation of the high order microscopic solver we derived, an iterative formula to calculate the microscopic solver is then proposed. Using the iterative formula, we develop an implementation to the method in an efficient way for practical applications. Several numerical examples are presented to validate the new models and numerical methods.
In this short note, we present a new technique to accelerate the convergence of a FFT-based solver for numerical homogenization of complex periodic media proposed by Moulinec and Suquet in 1994. The approach proceeds from discretization of the govern ing integral equation by the trigonometric collocation method due to Vainikko (2000), to give a linear system which can be efficiently solved by conjugate gradient methods. Computational experiments confirm robustness of the algorithm with respect to its internal parameters and demonstrate significant increase of the convergence rate for problems with high-contrast coefficients at a low overhead per iteration.
The higher order multipoles above the electric quadrupole are commonly neglected in metamaterial homogenization. We show that they nevertheless can be significant when second order spatial dispersive effects, such as the magnetic response, are consid ered. In this respect, they can be equally important as the magnetization and quadrupole terms, and should not automatically be neglected.
We propose an efficient numerical strategy for simulating fluid flow through porous media with highly oscillatory characteristics. Specifically, we consider non-linear diffusion models. This scheme is based on the classical homogenization theory and uses a locally mass-conservative formulation. In addition, we discuss some properties of the standard non-linear solvers and use an error estimator to perform a local mesh refinement. The main idea is to compute the effective parameters in such a way that the computational complexity is reduced without affecting the accuracy. We perform some numerical examples to illustrate the behaviour of the adaptive scheme and of the non-linear solvers. Finally, we discuss the advantages of the implementation of the numerical homogenization in a periodic media and the applicability of the same scheme in non-periodic test cases such as SPE10th project.
This paper provides an a~priori error analysis of a localized orthogonal decomposition method (LOD) for the numerical stochastic homogenization of a model random diffusion problem. If the uniformly elliptic and bounded random coefficient field of the model problem is stationary and satisfies a quantitative decorrelation assumption in form of the spectral gap inequality, then the expected $L^2$ error of the method can be estimated, up to logarithmic factors, by $H+(varepsilon/H)^{d/2}$; $varepsilon$ being the small correlation length of the random coefficient and $H$ the width of the coarse finite element mesh that determines the spatial resolution. The proof bridges recent results of numerical homogenization and quantitative stochastic homogenization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا