ترغب بنشر مسار تعليمي؟ اضغط هنا

Metal-insulator transition in the hybridized two-orbital Hubbard model revisited

74   0   0.0 ( 0 )
 نشر من قبل Karen Hallberg
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study the two-orbital Hubbard model on a square lattice in the presence of hybridization between nearest-neighbor orbitals and a crystal-field splitting. We use a highly reliable numerical technique based on the density matrix renormalization group to solve the dynamical mean field theory self-consistent impurity problem. We find that the orbital mixing always leads to a finite local density states at the Fermi energy in both orbitals when at least one band is metallic. When one band is doped, and the chemical potential lies between the Hubbard bands in the other band, the coherent quasiparticle peak in this orbital has an exponential behavior with the Hubbard interaction $U$.



قيم البحث

اقرأ أيضاً

We have investigated the half-filling two-orbital Hubbard model on a triangular lattice by means of the dynamical mean-field theory (DMFT). The densities of states and optical conductivity clearly show the occurence of metal-insulating transition (MI T) at U$_{c}$, U$_{c}$=18.2, 16.8, 6.12 and 5.85 for J=0, 0.01U, U/4 and U/3, respectively. The distinct continuities of double occupation of electrons, local square moments and local susceptibility of the charge, the spin and the orbital at J > 0 suggest that the MIT is the first-order; however at J=0, the MIT is the second-order in the half-filling two-orbital Hubbard model on triangular lattices. We attribute the first-order nature of the MIT to the low symmetry of the systems with finite Hunds coupling J.
184 - Takemi Yamada , Jun Ishizuka , 2013
We investigate a two-orbital model for iron-based superconductors to elucidate the effect of interplay between electron correlation and Jahn-Teller electron-phonon coupling by using the dynamical mean-field theory combined with the exact diagonalizat ion method. When the intra- and inter-orbital Coulomb interactions, $U$ and $U$, increase with $U=U$, both the local spin and orbital susceptibilities, $chi_{s}$ and $chi_{o}$, increase with $chi_{s}=chi_{o}$ in the absence of the Hunds rule coupling $J$ and the electron-phonon coupling $g$. In the presence of $J$ and $g$, there are distinct two regimes: for $J stackrel{>}{_sim} 2g^2/omega_0$ with the phonon frequency $omega_0$, $chi_{s}$ is enhanced relative to $chi_{o}$ and shows a divergence at $J=J_c$ above which the system becomes Mott insulator, while for $J stackrel{<}{_sim} 2g^2/omega_0$, $chi_{o}$ is enhanced relative to $chi_{s}$ and shows a divergence at $g=g_c$ above which the system becomes bipolaronic insulator. In the former regime, the superconductivity is mediated by antiferromagnetic fluctuations enhanced due to Fermi-surface nesting and is found to be largely dependent on carrier doping. On the other hand, in the latter regime, the superconductivity is mediated by ferro-orbital fluctuations and is observed for wide doping region including heavily doped case without the Fermi-surface nesting.
We examine the metal-insulator transition in a half-filled Hubbard model of electrons with random and all-to-all hopping and exchange, and an on-site non-random repulsion, the Hubbard $U$. We argue that recent numerical results of Cha et al. (arXiv:2 002.07181) can be understood in terms of a deconfined critical point between a disordered Fermi liquid and an insulating spin glass. We find a deconfined critical point in a previously proposed large $M$ theory which generalizes the SU(2) spin symmetry to SU($M$), and obtain exponents for the electron and spin correlators which agree with those of Cha et al. We also present a renormalization group analysis, and argue for the presence of an additional metallic spin glass phase at half-filling and small $U$.
In contrast to the Hubbard model, the extended Hubbard model, which additionally accounts for non-local interactions, lacks systemic studies of thermodynamic properties especially across the metal-insulator transition. Using a variational principle, we perform such a systematic study and describe how non-local interactions screen local correlations differently in the Fermi-liquid and in the insulator. The thermodynamics reveal that non-local interactions are at least in parts responsible for first-order metal-insulator transitions in real materials.
In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the essential condition for realizing orbital orders, we study simple two-orbital ($d_{xz}$, $d_{yz}$) Hubbard model. We find that the orbital order, which corresponds to the nematic order, appears due to the vertex corrections even in the two-orbital model. Thus, $d_{xy}$ orbital is not essential to realize the nematic orbital order. The obtained orbital order depends on the orbital dependence and the topology of fermi surfaces. We also find that another type of orbital order, which is rotated $45^circ$, appears in the heavily hole-doped case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا