ترغب بنشر مسار تعليمي؟ اضغط هنا

HATS-50b through HATS-53b: four transiting hot Jupiters orbiting G-type stars discovered by the HATSouth survey

70   0   0.0 ( 0 )
 نشر من قبل Luigi Mancini
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of four close-in transiting exoplanets, HATS-50 through HATS-53, discovered using the HATSouth three-continent network of homogeneous and automated telescopes. These new exoplanets belong to the class of hot Jupiters and orbit G-type dwarf stars, with brightness in the range V=12.5-14.0 mag. While HATS-53 has many physical characteristics similar to the Sun, the other three stars appear to be metal rich, larger and more massive. Three of the new exoplanets, namely HATS-50, HATS-51 and HATS-53, have low density and similar orbital period. Instead, HATS-52 is more dense and has a shorter orbital period. It also receives an intensive radiation from its parent star and, consequently, presents a high equilibrium temperature. HATS-50 shows a marginal additional transit feature consistent with an ultra-short period hot super Neptune, which will be able to be confirmed with TESS photometry.



قيم البحث

اقرأ أيضاً

We report the discovery of five new transiting hot Jupiter planets discovered by the HATSouth survey: HATS-31b through HATS-35b. These planets orbit moderately bright stars with V magnitudes within the range 11.9-14.4mag while the planets span a rang e of masses 0.88-1.22MJ, and have somewhat inflated radii between 1.23-1.64RJ.These planets can be classified as typical hot Jupiters, with HATS-31b and HATS-35b being moderately inflated gas giant planets with radii of $1.64 pm 0.22$ RJ and 1.464+0.069-0.044RJ, respectively, that can be used to constrain inflation mechanisms. All five systems present a higher Bayesian evidence for a fixed circular orbit model than for an eccentric orbit. The orbital periods range from $1.8209993 pm 0.0000016$ day for HATS-35b) to $3.377960 pm 0.000012$ day for HATS-31b. Additionally, HATS-35b orbits a relatively young F star with an age of $2.13 pm 0.51$ Gyr. We discuss the analysis to derive the properties of these systems and compare them in the context of the sample of well characterized transiting hot Jupiters known to date.
We report the discovery by the HATSouth exoplanet survey of three hot-Saturn transiting exoplanets: HATS-19b, HATS-20b, and HATS-21b. The planet host HATS-19 is a slightly evolved V = 13.0 G0 star with [Fe/H] = 0.240, a mass of 1.303 Msun, and a radi us of 1.75 Rsun. HATS-19b is in an eccentric orbit (e = 0.30) around this star with an orbital period of 4.5697 days and has a mass of 0.427 Mjup and a highly inflated radius of 1.66 Rjup. The planet HATS-20b has a Saturn-like mass and radius of 0.273 Mjup and 0.776 Rjup respectively. It orbits the V = 13.8 G9V star HATS-20 (Ms = 0.910 Msun; Rs = 0.892 Rsun) with a period of 3.7993 days. Finally, HATS-21 is a V = 12.2 G4V star with [Fe/H] = 0.300, a mass of 1.080 Msun, and a radius of 1.021 Rsun. Its accompanying planet HATS-21b has a 3.5544-day orbital period, a mass of 0.332 Mjup, and a moderately inflated radius of 1.123 Rjup. With the addition of these three very different planets to the growing sample of hot-Saturns, we re-examine the relations between the observed giant planet radii, stellar irradiation, and host metallicity. We find a significant positive correlation between planet equilibrium temperature and radius, and a weak negative correlation between host metallicity and radius. To assess the relative influence of various physical parameters on observed planet radii, we train and fit models using Random Forest regression. We find that for hot-Saturns (0.1 < Mp < 0.5 Mjup), the planetary mass and equilibrium temperature play dominant roles in determining radii. For hot-Jupiters (0.5 < Mp < 2.0 Mjup), the most important parameter is equilibrium temperature alone. Finally, for irradiated higher-mass planets (Mp > 2.0 Mjup), we find that equilibrium temperature dominates in influence, with smaller contributions from planet mass and host metallicity.
We report the discovery of HATS-13b and HATS-14b, two hot-Jupiter transiting planets discovered by the HATSouth survey. The host stars are quite similar to each other (HATS-13: V = 13.9 mag, M* = 0.96 Msun, R* = 0.89 Rsun, Teff = 5500 K, [Fe/H] = 0.0 5; HATS-14: V = 13.8 mag, M* = 0.97 Msun, R* = 0.93 Rsun, Teff = 5350 K, [Fe/H] = 0.33) and both the planets orbit around them with a period of roughly 3 days and a separation of roughly 0.04 au. However, even though they are irradiated in a similar way, the physical characteristics of the two planets are very different. HATS-13b, with a mass of Mp = 0.543 MJ and a radius of Rp = 1.212 RJ, appears as an inflated planet, while HATS-14b, having a mass of Mp = 1.071 MJ and a radius of Rp = 1.039 RJ, is only slightly larger in radius than Jupiter.
We report six new inflated hot Jupiters (HATS-25b through HATS-30b) discovered using the HATSouth global network of automated telescopes. The planets orbit stars with $V$ magnitudes in the range $sim 12-14$ and have masses in the largely populated $0 .5M_J-0.7M_J$ region of parameter space but span a wide variety of radii, from $1.17R_J$ to $1.75 R_J$. HATS-25b, HATS-28b, HATS-29b and HATS-30b are typical inflated hot Jupiters ($R_p = 1.17-1.26R_J$) orbiting G-type stars in short period ($P=3.2-4.6$ days) orbits. However, HATS-26b ($R_p = 1.75R_J$, $P = 3.3024$ days) and HATS-27b ($R_p=1.50R_J$, $P=4.6370$ days) stand out as highly inflated planets orbiting slightly evolved F stars just after and in the turn-off points, respectively, which are among the least dense hot Jupiters, with densities of $0.153$ g cm$^{-3}$ and $0.180$ g cm$^{-3}$, respectively. All the presented exoplanets but HATS-27b are good targets for future atmospheric characterization studies, while HATS-27b is a prime target for Rossiter-McLaughlin monitoring in order to determine its spin-orbit alignment given the brightness ($V = 12.8$) and stellar rotational velocity ($v sin i approx 9.3$ km/s) of the host star. These discoveries significantly increase the number of inflated hot Jupiters known, contributing to our understanding of the mechanism(s) responsible for hot Jupiter inflation.
We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V=12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a pe riod P~3.4465 d, mass Mp~1.86MJ, and radius Rp~1.30RJ. The host star has a mass of 0.99Msun, and radius of 1.04Rsun. The discovery light curve of HATS-1b has near continuous coverage over several multi-day periods, demonstrating the power of using a global network of telescopes to discover transiting planets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا