ﻻ يوجد ملخص باللغة العربية
The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the combined analysis of several materials science techniques - X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT) based calculations for the samples under study were performed as well. The cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation method exhibits spheroidal-like nanoclusters with well-defined edges assembled from primary nanoparticles with an average size of 50 nm, whereas the monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive pyrolysis has a denser structure compared with natural gadolinia. This phase also has a structure composed of three-dimensional complex agglomerates without clear-edged boundaries that are ~21 nm in size plus a cubic phase admixture of only 2 at. % composed of primary edge-boundary nanoparticles ~15 nm in size. These atomic features appear in the electronic structure as different defects ([Gd...O-OH] and [Gd...O-O]) and have dissimilar contributions to the charge-transfer processes among the appropriate electronic states with ambiguous contributions in the Gd 5p - O 2s core-like levels in the valence band structures. The origin of [Gd...O-OH] defects found by XPS was well-supported by PL analysis. The electronic and atomic structures of the synthesized gadolinias calculated using DFT were compared and discussed on the basis of the well-known joint OKT-van der Laan model, and good agreement was established.
Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carryin
We report on self-assembled iron oxide nanoparticle films on silicon substrates. In addition to homogeneously assembled layers, we fabricated patterned trenches of 40-1000 nm width using electron beam lithography for the investigation of assisted sel
We derive electronic structure models for weakly interacting bilayers such as graphene-graphene and graphene-hexagonal boron nitride, based on density functional theory calculations followed by Wannier transformation of electronic states. These trans
Using large-scale, real-time quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multi-particle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, densit
It is highly desirable to search for promising two-dimensional (2D) monolayer materials for deep insight of 2D materials and applications. We use first-principles method to investigate tetragonal perovskite oxide monolayers as 2D materials. We find f