ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory

148   0   0.0 ( 0 )
 نشر من قبل Danil Boukhvalov W
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cubic (c) and monoclinic (m) polymorphs of Gd2O3 were studied using the combined analysis of several materials science techniques - X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) spectroscopy. Density functional theory (DFT) based calculations for the samples under study were performed as well. The cubic phase of gadolinium oxide (c-Gd2O3) synthesized using a precipitation method exhibits spheroidal-like nanoclusters with well-defined edges assembled from primary nanoparticles with an average size of 50 nm, whereas the monoclinic phase of gadolinium oxide (m-Gd2O3) deposited using explosive pyrolysis has a denser structure compared with natural gadolinia. This phase also has a structure composed of three-dimensional complex agglomerates without clear-edged boundaries that are ~21 nm in size plus a cubic phase admixture of only 2 at. % composed of primary edge-boundary nanoparticles ~15 nm in size. These atomic features appear in the electronic structure as different defects ([Gd...O-OH] and [Gd...O-O]) and have dissimilar contributions to the charge-transfer processes among the appropriate electronic states with ambiguous contributions in the Gd 5p - O 2s core-like levels in the valence band structures. The origin of [Gd...O-OH] defects found by XPS was well-supported by PL analysis. The electronic and atomic structures of the synthesized gadolinias calculated using DFT were compared and discussed on the basis of the well-known joint OKT-van der Laan model, and good agreement was established.

قيم البحث

اقرأ أيضاً

Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carryin g pi-electronic spins. These complexes being located on the graphene edges are stable at low temperatures but irreversibly dissociate at temperatures above 50-60 K. These EPR findings are justified by density functional theory (DFT) calculations demonstrating transfer of an electron from the zigzag edge of graphene-like material to oxygen molecule physisorbed on the graphene sheet edge. This charge transfer causes changing the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT calculations show significant changes of adsorption energy of oxygen molecule and robustness of the charge transfer to variations of the graphene-like substrate morphology (flat and corrugated mono- and bi-layered graphene) as well as edges passivation. The presence of H- and COOH- terminated edge carbon sites with such corrugated substrate morphology allows formation of ZE-O2- paramagnetic complexes characterized by small (<50 meV) binding energies and also explains their irreversible dissociation as revealed by EPR.
We report on self-assembled iron oxide nanoparticle films on silicon substrates. In addition to homogeneously assembled layers, we fabricated patterned trenches of 40-1000 nm width using electron beam lithography for the investigation of assisted sel f-assembly. The nanoparticles with a diameter of 20 nm +/- 7% were synthesized by thermal decomposition of iron oleate complexes in trioctylamine in presence of oleic acid. Samples with different track widths and nanoparticle concentration were characterized by scanning electron microscopy and by superconducting quantum interference device magnetometry.
We derive electronic structure models for weakly interacting bilayers such as graphene-graphene and graphene-hexagonal boron nitride, based on density functional theory calculations followed by Wannier transformation of electronic states. These trans ferable interlayer coupling models can be applied to investigate the physics of bilayers with arbitrary translations and twists. The functional form, in addition to the dependence on the distance, includes the angular dependence that results from higher angular momentum components in the Wannier $p_z$ orbitals. We demonstrate the capabilities of the method by applying it to a rotated graphene bilayer, which produces the analytically predicted renormalization of the Fermi velocity, van Hove singularities in the density of states, and Moir{e} pattern of the electronic localization at small twist angles. We further extend the theory to obtain the effective couplings by integrating out neighboring layers. This approach is instrumental for the design of van der Walls heterostructures with desirable electronic features and transport properties and for the derivation of low-energy theories for graphene stacks, including proximity effects from other layers.
Using large-scale, real-time quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multi-particle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, densit y functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by FRET based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET - in particular, we show that the commonly used nearest-neighbor FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.
It is highly desirable to search for promising two-dimensional (2D) monolayer materials for deep insight of 2D materials and applications. We use first-principles method to investigate tetragonal perovskite oxide monolayers as 2D materials. We find f our stable 2D monolayer materials from SrTiO$_3$, LaAlO$_3$, KTaO$_3$, and BaFeO$_3$, denoting them as STO-ML, LAO-ML, KTO-ML, and BFO-ML. Our further study shows that through overcoming dangling bonds the first three monolayers are 2D wide-gap semiconducotors, and BFO-ML is a 2D isotropic Heisenberg ferromagnetic metal. There is a large electrostatic potential energy difference between the two sides, reflecting a large out-of-plane dipole, in each of the monolayers. These make a series of 2D monolayer materials, and should be useful in novel electronic devices considering emerging phenomena in perovskite oxide heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا