ﻻ يوجد ملخص باللغة العربية
The long-lived, efficient storage and retrieval of a qubit encoded on a photon is an important ingredient for future quantum networks. Although systems with intrinsically long coherence times have been demonstrated, the combination with an efficient light-matter interface remains an outstanding challenge. In fact, the coherence times of memories for photonic qubits are currently limited to a few milliseconds. Here we report on a qubit memory based on a single atom coupled to a high-finesse optical resonator. By mapping and remapping the qubit between a basis used for light-matter interfacing and a basis which is less susceptible to decoherence, a coherence time exceeding 100 ms has been measured with a time-independant storage-and-retrieval efficiency of 22%. This demonstrates the first photonic qubit memory with a coherence time that exceeds the lower bound needed for teleporting qubits in a global quantum internet.
We show via an explicit example that quantum anomalies can lead to decoherence of a single quantum qubit through phase relaxation. The anomaly causes the Hamiltonian to develop a non-self-adjoint piece due to the non-invariance of the domain of the H
We demonstrate long-lived coherence in internal hyperfine states of a single Ca{43} trapped-ion qubit $[T_2=1.2(2)s]$, and in external motional states of a single Ca{40} trapped-ion qubit $[T_2=0.18(4)s]$, in the same apparatus. The motional decohere
The realization of a network of quantum registers is an outstanding challenge in quantum science and technology. We experimentally investigate a network node that consists of a single nitrogen-vacancy (NV) center electronic spin hyperfine-coupled to
The interaction of a quantum system with the environment leads to the so-called quantum decoherence. Beyond its fundamental significance, the understanding and the possible control of this dynamics in various scenarios is a key element for mastering
This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where