ﻻ يوجد ملخص باللغة العربية
Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for todays cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.
Datacenters provide the infrastructure for cloud computing services used by millions of users everyday. Many such services are distributed over multiple datacenters at geographically distant locations possibly in different continents. These datacente
Inter-datacenter networks connect dozens of geographically dispersed datacenters and carry traffic flows with highly variable sizes and different classes. Adaptive flow routing can improve efficiency and performance by assigning paths to new flows ac
This paper studies the optimal output-feedback control of a linear time-invariant system where a stochastic event-based scheduler triggers the communication between the sensor and the controller. The primary goal of the use of this type of scheduling
Localization in long-range Internet of Things networks is a challenging task, mainly due to the long distances and low bandwidth used. Moreover, the cost, power, and size limitations restrict the integration of a GPS receiver in each device. In this
The use of amateur drones (ADrs) is expected to significantly increase over the upcoming years. However, regulations do not allow such drones to fly over all areas, in addition to typical altitude limitations. As a result, there is an urgent need for