ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing HI gas in emission and absorption on pc to kpc scales in a galaxy at z ~ 0.017

59   0   0.0 ( 0 )
 نشر من قبل Neeraj Gupta
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the quasar-galaxy pair: J1243+4043 - UGC07904. The sight line of the background quasar ( $z_q$= 1.5266) passes through a region of the galaxy ($z_g$=0.0169) at an impact parameter of 6.9 kpc with high metallicity (0.5 Z$_odot$) and negligible dust extinction. We detect HI 21-cm absorption from the foreground galaxy at arcsecond and milliarcsecond scales. For typical cold neutral medium (CNM) temperatures in the Milky Way, this 21-cm absorber can be classified as a damped Ly$alpha$ absorber (DLA). We infer the harmonic mean spin temperature of the gas to be $sim$400 K and for a simple two-phase medium we estimate the CNM-fraction to be $f_{rm CNM}$ = 0.27. This is remarkably consistent with the CNM fraction observed in the Galaxy and less than that of high-redshift DLAs. The quasar exhibits a core-jet morphology on milliarcsecond scales, corresponding to an overall extent of $sim$9 pc at $z_g$. We show that the size of CNM absorbing clouds associated with the foreground galaxy is $>$5 pc and they may be part of cold gas structures that extend beyond $sim$35 pc. Interestingly, the rotation measure of quasar J1243+4043 is higher than any other source in samples of quasars with high-$z$ DLAs. However, we do not find any detectable differences in RMs and polarization fraction of sight lines with or without high-$z$ ($zge2$) DLAs or low-$z$ ($zle0.3$) 21-cm absorbers. Finally, the foreground galaxy UGC07904 is also part of a galaxy group. We serendipitously detect HI 21-cm emission from four members of the group, and a $sim$80 kpc long HI bridge connecting two of the other members. The latter, together with the properties of the group members, suggests that the group is a highly interactive environment.



قيم البحث

اقرأ أيضاً

We calibrate commonly used star formation rate (SFR) prescriptions using observations in five kpc-sized fields in the nearby galaxy Andromeda (M31) at 10,pc spatial resolution. Our observations at different scales enable us to resolve the star-formin g regions and to distinguish them from non star-forming components. We use extinction corrected H$alpha$ from optical integral field spectroscopy as our reference tracer and have verified its reliability via tests. It is used to calibrate monochromatic and hybrid (H$alpha$+a$times$IR and FUV+b$times$IR) SFR prescriptions, which use FUV (GALEX), 22,$mu$m (WISE) and 24,$mu$m (MIPS). Additionally, we evaluate other multi-wavelength infra-red tracers. Our results indicate that the SFR prescriptions do not change (in M31) with spatial scales or with subtraction of the diffuse component. For the calibration factors in the hybrid SFR prescriptions, we find a$approx$0.2 and b$approx$22 in M31, which are a factor of 5 higher than in the literature. As the fields in M31 exhibit high attenuation and low dust temperatures, lie at large galacto-centric distances, and suffer from high galactic inclination compared to measurements in other galaxies, we propose that the fields probe a dust layer extended along the line of sight that is not directly spatially associated with star-forming regions. This (vertically) extended dust component increases the attenuation and alters the SFR prescriptions in M31 compared to literature measurements. We recommend that SFR prescriptions should be applied with caution at large galacto-centric distances and in highly inclined galaxies, due to variations in the relative (vertical) distribution of dust and gas.
We report the first characterization of an extended outflow of high ionized gas in the Circinus Galaxy by means of the coronal line [FeVII] $lambda$6087 AA. This emission is located within the ionization cone already detected in the [OIII] $lambda$50 07 AA line and is found to extend up to a distance of 700 pc from the AGN. The gas distribution appears clumpy, with several knots of emission. Its kinematics is complex, with split profiles and line centroids shifted from the systemic velocity. The physical conditions of the gas show that the extended coronal emission is likely the remnants of shells inflated by the passage of a radio-jet. This scenario is supported by extended X-ray emission, which is spatially coincident with the morphology and extension of the [FeVII] $lambda$6087~AA gas in the NW side of the galaxy. The extension of the coronal gas in the Circinus galaxy is unique among active galaxies and demonstrates the usefulness of coronal lines for tracing the shock ionization component in these objects.
We report ALMA observations of the most massive (star forming) galaxy in the redshift range 3<z<4 within the whole GOODS-S field. We detect a large elongated structure of molecular gas around the massive primeval galaxy, traced by the CO(4-3) emissio n, and extended over 40 kpc. We infer a mass of the large gaseous structure of Mgas~2-6x10^11 Msun. About 60% of this mass is not directly associated with either the central galaxy or its two lower mass satellites. The CO extended structure is also detected in continuum thermal emission. The kinematics of the molecular gas shows the presence of different components, which cannot be ascribed to simple rotation. Furthermore, on even larger scales, we detect nine additional CO systems within a radius of 250 kpc from the massive galaxy and mostly distributed in the same direction as the CO elongated structure found in the central 40 kpc. The stacked images of these CO systems show detections in the thermal continuum and in the X-rays, suggesting that these systems are forming stars at a rate of 30-120 Msun/yr. We suggest that the extended gas structure, combined with its kinematic properties, and the gas rich star forming systems detected on larger scales, are tracing the inner and densest regions of large scale accreting streams, feeding the central massive galaxy. These results corroborate models of galaxy formation, in which accreting streams are clumpy and undergo some star formation (hence enriching the streams with metals) even before accreting onto the central galaxy.
HI kinematic asymmetries are common in late-type galaxies irrespective of environment, although the amplitudes are strikingly low in isolated galaxies. As part of our studies of the HI morphology and kinematics in isolated late-type galaxies we have chosen several very isolated galaxies from the AMIGA sample for HI mapping. Here we present GMRT 21-cm HI line mapping of CIG 340 which was selected because its integrated HI spectrum has a very symmetric profile, Aflux = 1.03. Optical images of the galaxy hinted at a warped disk in contrast to the symmetric integrated HI spectrum profile. Our aim is to determine the extent to which the optical asymmetry is reflected in the resolved HI morphology and kinematics. GMRT observations reveal significant HI morphological asymmetries in CIG 340 despite its overall symmetric optical form and highly symmetric HI spectrum. The most notable HI features are: 1) a warp in the HI disk (with an optical counterpart), 2) the HI north/south flux ratio = 1.32 is much larger than expected from the integrated HI spectrum profile and 3) a ~ 45 (12 kpc) HI extension, containing ~ 6% of the detected HI mass on the northern side of the disk. We conclude that in isolated galaxies a highly symmetric HI spectrum can mask significant HI morphological asymmetries. The northern HI extension appears to be the result of a recent perturbation (10^8 yr), possibly by a satellite which is now disrupted or projected within the disk. This study provides an important step in our ongoing program to determine the predominant source of HI asymmetries in isolated galaxies. For CIG 340 the isolation from major companions, symmetric HI spectrum, optical morphology and interaction timescales have allowed us to narrow the possible causes the HI asymmetries and identify tests to further constrain the source of the asymmetries.
92 - M. Neeleman 2016
We present the first detection of molecular emission from a galaxy selected to be near a projected background quasar using the Atacama Large Millimeter/submillimeter Array (ALMA). The ALMA detection of CO(1$-$0) emission from the $z=0.101$ galaxy tow ard quasar PKS 0439-433 is coincident with its stellar disk and yields a molecular gas mass of $M_{rm mol} approx 4.2 times 10^9 M_odot$ (for a Galactic CO-to-H$_2$ conversion factor), larger than the upper limit on its atomic gas mass. We resolve the CO velocity field, obtaining a rotational velocity of $134 pm 11$ km s$^{-1}$, and a resultant dynamical mass of $geq 4 times 10^{10} M_odot$. Despite its high metallicity and large molecular mass, the $z=0.101$ galaxy has a low star formation rate, implying a large gas consumption timescale, larger than that typical of late-type galaxies. Most of the molecular gas is hence likely to be in a diffuse extended phase, rather than in dense molecular clouds. By combining the results of emission and absorption studies, we find that the strongest molecular absorption component toward the quasar cannot arise from the molecular disk, but is likely to arise from diffuse gas in the galaxys circumgalactic medium. Our results emphasize the potential of combining molecular and stellar emission line studies with optical absorption line studies to achieve a more complete picture of the gas within and surrounding high-redshift galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا