ﻻ يوجد ملخص باللغة العربية
We study the condensation of exciton-polaritons in a two-dimensional Lieb lattice of micropillars. We show selective polariton condensation into the flatbands formed by S and P$_{x;y}$ orbital modes of the micropillars under non-resonant laser excitation. The real space mode patterns of these condensates are accurately reproduced by the calculation of related Bloch modes of S- and P-flatbands. Our work emphasizes the potential of exciton-polariton lattices to emulate Hamiltonians of advanced potential landscapes. Furthermore, the obtained results provide a deeper inside into the physics of flatbands known mostly within the tight-binding limit.
We study exciton-polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from $S$ and $P_{x,y}$ photonic orbitals, into which we trigger bosonic condensation under high power exci
The specific topology of the line centered square lattice (known also as the Lieb lattice) induces remarkable spectral properties as the macroscopically degenerated zero energy flat band, the Dirac cone in the low energy spectrum, and the peculiar Ho
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity thresh
We study the coherence and density modulation of a non-equilibrium exciton-polariton condensate in a one-dimensional valley with disorder. By means of interferometric measurements we evidence a modulation of the first-order coherence function and we
We study the localization properties of the two-dimensional Lieb lattice and its extensions in the presence of disorder using transfer matrix method and finite-size scaling. We find that all states in the Lieb lattice and its extensions are localized