ترغب بنشر مسار تعليمي؟ اضغط هنا

North Ecliptic Pole multi-wavelength survey : new optical data with Hyper Suprime-Cam and near-future prospects with eROSITA

262   0   0.0 ( 0 )
 نشر من قبل Nagisa Oi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The AKARI North Ecliptic Pole (NEP) survey consists of two survey projects: NEP-Deep (0.5 sq.deg) and NEP-Wide (5.4 sq.deg), providing with tens of thousands of galaxies. A continuous filter coverage in the mid-infrared wavelengths (7, 9, 11, 15, 18 and 24 $mu$m) is unique to diagnose the contributions from dusty star-formation activity and AGNs. Here we present current status focused on the newly obtained optical images and near-future prospects with a new X-ray telescope. Hyper Suprime-Cam on Subaru telescope is a gigantic optical camera with huge Field of View (FoV). Thanks to the wide FoV, we successfully obtained deep optical images at g, r, i, z and Y-bands covering most of the NEP-Wide field. Using the deep optical images, we identified over 5000 optical counterparts of the mid-IR sources, presumably deeply obscured galaxies in NEP-Wide field. We also investigated properties of these infrared sources with SED-fitting. eROSITA, to be launched early 2018, is a new all-sky X-ray survey telescope, and expected to conduct ultra deep 2-10 keV imaging toward NEP. We expect unprecedentedly numerous Compton-thick AGN candidates when combined with the multi-wavelength data in NEP region.

قيم البحث

اقرأ أيضاً

The $AKARI$ space infrared telescope has performed near- to mid-infrared (MIR) observations on the North Ecliptic Pole Wide (NEPW) field (5.4 deg$^2$) for about one year. $AKARI$ took advantage of its continuous nine photometric bands, compared with NASAs $Spitzer$ and WISE space telescopes, which had only four filters with a wide gap in the MIR. The $AKARI$ NEPW field lacked deep and homogeneous optical data, limiting the use of nearly half of the IR sources for extra-galactic studies owing to the absence of photometric redshifts (photo-zs). To remedy this, we have recently obtained deep optical imaging over the NEPW field with 5 bands ($g$, $r$, $i$, $z$, and $Y$) of the Hyper Suprime-Camera (HSC) on the Subaru 8m telescope. We optically identify AKARI-IR sources along with supplementary $Spitzer$ and WISE data as well as pre-existing optical data. In this work, we derive new photo-zs using a $chi^2$ template-fitting method code ($Le$ $Phare$) and reliable photometry from 26 selected filters including HSC, $AKARI$, CFHT, Maidanak, KPNO, $Spitzer$ and WISE data. We take 2026 spectroscopic redshifts (spec-z) from all available spectroscopic surveys over the NEPW to calibrate and assess the accuracy of the photo-zs. At z < 1.5, we achieve a weighted photo-z dispersion of $sigma_{Delta{z/(1+z)}}$ = 0.053 with $eta$ = 11.3% catastrophic errors.
We present the physical properties of AKARI sources without optical counterparts in optical images from the Hyper Suprime-Cam (HSC) on the Subaru telescope. Using the AKARI infrared (IR) source catalog and HSC optical catalog, we select 583 objects t hat do not have HSC counterparts in the AKARI North Ecliptic Pole (NEP) wide survey field ($sim 5$ deg$^{2}$). Because the HSC limiting magnitude is deep ($g_{rm AB}$ $sim 28.6$), these are good candidates for extremely red star-forming galaxies (SFGs) and/or active galactic nuclei (AGNs), possibly at high redshifts. We compile multi-wavelength data out to 500 $mu$m and use it for Spectral Energy Distribution (SED) fitting with CIGALE to investigate the physical properties of AKARI galaxies without optical counterparts. We also compare their physical quantities with AKARI mid-IR selected galaxies with HSC counterparts. The estimated redshifts of AKARI objects without HSC counterparts range up to $zsim 4$, significantly higher than that of AKARI objects with HSC counterparts. We find that: (i) 3.6 $-$ 4.5 $mu$m color, (ii) AGN luminosity, (iii) stellar mass, (iv) star formation rate, and (v) $V$-band dust attenuation in the interstellar medium of AKARI objects without HSC counterparts are systematically larger than those of AKARI objects with counterparts. These results suggest that our sample includes luminous, heavily dust-obscured SFGs/AGNs at $zsim 1-4$ that are missed by previous optical surveys, providing very interesting targets for the coming James Webb Space Telescope era.
Galaxy clusters provide an excellent probe in various research fields in astrophysics and cosmology. However, the number of galaxy clusters detected so far in the $AKARI$ North Ecliptic Pole (NEP) field is limited. In this work, we provide galaxy clu ster candidates in the $AKARI$ NEP field with the minimum requisites based only on coordinates and photometric redshift (photo-$z$) of galaxies. We used galaxies detected in 5 optical bands ($g$, $r$, $i$, $z$, and $Y$) by the Subaru Hyper Suprime-Cam (HSC), assisted with $u$-band from Canada-France-Hawaii Telescope (CFHT) MegaPrime/MegaCam, and IRAC1 and IRAC2 bands from the $Spitzer$ space telescope for photo-$z$ estimation. We calculated the local density around every galaxy using the 10$^{th}$-nearest neighbourhood. Cluster candidates were determined by applying the friends-of-friends algorithm to over-densities. 88 cluster candidates containing 4390 member galaxies below redshift 1.1 in 5.4 deg$^2$ have been detected. The reliability of our method was examined through false detection tests, redshift uncertainty tests, and applications on the COSMOS data, giving false detection rates of 0.01 to 0.05 and recovery rate of 0.9 at high richness. 3 X-ray clusters previously observed by $ROSAT$ and $Chandra$ were recovered. The cluster galaxies show higher stellar mass and lower star formation rate (SFR) compared to the field galaxies in two-sample Z-tests. These cluster candidates are useful for environmental studies of galaxy evolution and future astronomical surveys in the NEP, where $AKARI$ has performed unique 9-band mid-infrared photometry for tens of thousands of galaxies.
99 - H.Matsuhara , T. Wada , N. Oi 2017
The recent updates of the North Ecliptic Pole deep (0.5~deg$^2$, NEP-Deep) multi-wavelength survey covering from X-ray to radio-wave is presented. The NEP-Deep provides us with several thousands of 15~$mu$m or 18~$mu$m selected sample of galaxies, wh ich is the largest sample ever made at this wavelengths. A continuous filter coverage in the mid-infrared wavelength (7, 9, 11, 15, 18, and 24~$mu$m) is unique and vital to diagnose the contributions from starbursts and AGNs in the galaxies out to $z$=2.The new goal of the project is to resolve the nature of the cosmic star formation history at the violent epoch (e.g. $z$=1--2), and to find a clue to understand its decline from $z$=1 to present universe by utilizing the unique power of the multi-wavelength survey. The progress in this context is briefly mentioned.
We report the discovery of a new ultra-faint dwarf satellite companion of the Milky Way based on the early survey data from the Hyper Suprime-Cam Subaru Strategic Program. This new satellite, Virgo I, which is located in the constellation of Virgo, h as been identified as a statistically significant (5.5 sigma) spatial overdensity of star-like objects with a well-defined main sequence and red giant branch in their color-magnitude diagram. The significance of this overdensity increases to 10.8 sigma when the relevant isochrone filter is adopted for the search. Based on the distribution of the stars around the likely main sequence turn-off at r ~ 24 mag, the distance to Virgo I is estimated as 87 kpc, and its most likely absolute magnitude calculated from a Monte Carlo analysis is M_V = -0.8 +/- 0.9 mag. This stellar system has an extended spatial distribution with a half-light radius of 38 +12/-11 pc, which clearly distinguishes it from a globular cluster with comparable luminosity. Thus, Virgo I is one of the faintest dwarf satellites known and is located beyond the reach of the Sloan Digital Sky Survey. This demonstrates the power of this survey program to identify very faint dwarf satellites. This discovery of VirgoI is based only on about 100 square degrees of data, thus a large number of faint dwarf satellites are likely to exist in the outer halo of the Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا