ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequence Mining and Pattern Analysis in Drilling Reports with Deep Natural Language Processing

69   0   0.0 ( 0 )
 نشر من قبل J\\'ulio Hoffimann
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Drilling activities in the oil and gas industry have been reported over decades for thousands of wells on a daily basis, yet the analysis of this text at large-scale for information retrieval, sequence mining, and pattern analysis is very challenging. Drilling reports contain interpretations written by drillers from noting measurements in downhole sensors and surface equipment, and can be used for operation optimization and accident mitigation. In this initial work, a methodology is proposed for automatic classification of sentences written in drilling reports into three relevant labels (EVENT, SYMPTOM and ACTION) for hundreds of wells in an actual field. Some of the main challenges in the text corpus were overcome, which include the high frequency of technical symbols, mistyping/abbreviation of technical terms, and the presence of incomplete sentences in the drilling reports. We obtain state-of-the-art classification accuracy within this technical language and illustrate advanced queries enabled by the tool.

قيم البحث

اقرأ أيضاً

Despite the high accuracy offered by state-of-the-art deep natural-language models (e.g. LSTM, BERT), their application in real-life settings is still widely limited, as they behave like a black-box to the end-user. Hence, explainability is rapidly b ecoming a fundamental requirement of future-generation data-driven systems based on deep-learning approaches. Several attempts to fulfill the existing gap between accuracy and interpretability have been done. However, robust and specialized xAI (Explainable Artificial Intelligence) solutions tailored to deep natural-language models are still missing. We propose a new framework, named T-EBAnO, which provides innovative prediction-local and class-based model-global explanation strategies tailored to black-box deep natural-language models. Given a deep NLP model and the textual input data, T-EBAnO provides an objective, human-readable, domain-specific assessment of the reasons behind the automatic decision-making process. Specifically, the framework extracts sets of interpretable features mining the inner knowledge of the model. Then, it quantifies the influence of each feature during the prediction process by exploiting the novel normalized Perturbation Influence Relation index at the local level and the novel Global Absolute Influence and Global Relative Influence indexes at the global level. The effectiveness and the quality of the local and global explanations obtained with T-EBAnO are proved on (i) a sentiment analysis task performed by a fine-tuned BERT model, and (ii) a toxic comment classification task performed by an LSTM model.
386 - Mariya Toneva , Leila Wehbe 2019
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representa tions learned by these networks. We propose here a novel interpretation approach that relies on the only processing system we have that does understand language: the human brain. We use brain imaging recordings of subjects reading complex natural text to interpret word and sequence embeddings from 4 recent NLP models - ELMo, USE, BERT and Transformer-XL. We study how their representations differ across layer depth, context length, and attention type. Our results reveal differences in the context-related representations across these models. Further, in the transformer models, we find an interaction between layer depth and context length, and between layer depth and attention type. We finally hypothesize that altering BERT to better align with brain recordings would enable it to also better understand language. Probing the altered BERT using syntactic NLP tasks reveals that the model with increased brain-alignment outperforms the original model. Cognitive neuroscientists have already begun using NLP networks to study the brain, and this work closes the loop to allow the interaction between NLP and cognitive neuroscience to be a true cross-pollination.
Many search systems work with large amounts of natural language data, e.g., search queries, user profiles and documents, where deep learning based natural language processing techniques (deep NLP) can be of great help. In this paper, we introduce a c omprehensive study of applying deep NLP techniques to five representative tasks in search engines. Through the model design and experiments of the five tasks, readers can find answers to three important questions: (1) When is deep NLP helpful/not helpful in search systems? (2) How to address latency challenges? (3) How to ensure model robustness? This work builds on existing efforts of LinkedIn search, and is tested at scale on a commercial search engine. We believe our experiences can provide useful insights for the industry and research communities.
99 - Hai Wang 2020
Deep learning has become the workhorse for a wide range of natural language processing applications. But much of the success of deep learning relies on annotated examples. Annotation is time-consuming and expensive to produce at scale. Here we are in terested in methods for reducing the required quantity of annotated data -- by making the learning methods more knowledge efficient so as to make them more applicable in low annotation (low resource) settings. There are various classical approaches to making the models more knowledge efficient such as multi-task learning, transfer learning, weakly supervised and unsupervised learning etc. This thesis focuses on adapting such classical methods to modern deep learning models and algorithms. This thesis describes four works aimed at making machine learning models more knowledge efficient. First, we propose a knowledge rich deep learning model (KRDL) as a unifying learning framework for incorporating prior knowledge into deep models. In particular, we apply KRDL built on Markov logic networks to denoise weak supervision. Second, we apply a KRDL model to assist the machine reading models to find the correct evidence sentences that can support their decision. Third, we investigate the knowledge transfer techniques in multilingual setting, where we proposed a method that can improve pre-trained multilingual BERT based on the bilingual dictionary. Fourth, we present an episodic memory network for language modelling, in which we encode the large external knowledge for the pre-trained GPT.
Interpretability methods like Integrated Gradient and LIME are popular choices for explaining natural language model predictions with relative word importance scores. These interpretations need to be robust for trustworthy NLP applications in high-st ake areas like medicine or finance. Our paper demonstrates how interpretations can be manipulated by making simple word perturbations on an input text. Via a small portion of word-level swaps, these adversarial perturbations aim to make the resulting text semantically and spatially similar to its seed input (therefore sharing similar interpretations). Simultaneously, the generated examples achieve the same prediction label as the seed yet are given a substantially different explanation by the interpretation methods. Our experiments generate fragile interpretations to attack two SOTA interpretation methods, across three popular Transformer models and on two different NLP datasets. We observe that the rank order correlation drops by over 20% when less than 10% of words are perturbed on average. Further, rank-order correlation keeps decreasing as more words get perturbed. Furthermore, we demonstrate that candidates generated from our method have good quality metrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا