ﻻ يوجد ملخص باللغة العربية
Drilling activities in the oil and gas industry have been reported over decades for thousands of wells on a daily basis, yet the analysis of this text at large-scale for information retrieval, sequence mining, and pattern analysis is very challenging. Drilling reports contain interpretations written by drillers from noting measurements in downhole sensors and surface equipment, and can be used for operation optimization and accident mitigation. In this initial work, a methodology is proposed for automatic classification of sentences written in drilling reports into three relevant labels (EVENT, SYMPTOM and ACTION) for hundreds of wells in an actual field. Some of the main challenges in the text corpus were overcome, which include the high frequency of technical symbols, mistyping/abbreviation of technical terms, and the presence of incomplete sentences in the drilling reports. We obtain state-of-the-art classification accuracy within this technical language and illustrate advanced queries enabled by the tool.
Despite the high accuracy offered by state-of-the-art deep natural-language models (e.g. LSTM, BERT), their application in real-life settings is still widely limited, as they behave like a black-box to the end-user. Hence, explainability is rapidly b
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representa
Many search systems work with large amounts of natural language data, e.g., search queries, user profiles and documents, where deep learning based natural language processing techniques (deep NLP) can be of great help. In this paper, we introduce a c
Deep learning has become the workhorse for a wide range of natural language processing applications. But much of the success of deep learning relies on annotated examples. Annotation is time-consuming and expensive to produce at scale. Here we are in
Interpretability methods like Integrated Gradient and LIME are popular choices for explaining natural language model predictions with relative word importance scores. These interpretations need to be robust for trustworthy NLP applications in high-st