ترغب بنشر مسار تعليمي؟ اضغط هنا

From Multiple Nodal Chain to Dirac/Weyl Semimetal and Topological Insulator in Ternary Hexagonal Materials

82   0   0.0 ( 0 )
 نشر من قبل Cong Chen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dirac semimetal (DSM) hosts four-fold degenerate isolated band-crossing points with linear dispersion, around which the quasiparticles resemble the relativistic Dirac Fermions. It can be described by a 4 * 4 massless Dirac Hamiltonian which can be decomposed into a pair of Weyl points or gaped into an insulator. Thus, crystal symmetry is critical to guarantee the stable existence. On the contrary, by breaking crystal symmetry, a DSM may transform into a Weyl semimetal (WSM) or a topological insulator (TI). Here, by taking hexagonal LiAuSe as an example, we find that it is a starfruit shaped multiple nodal chain semimetal in the absence of spin-orbit coupling(SOC). In the presence of SOC, it is an ideal DSM naturally with the Dirac points locating at Fermi level exactly, and it would transform into WSM phase by introducing external Zeeman field or by magnetic doping with rare-earth atom Sm. It could also transform into TI state by breaking rotational symmetry. Our studies show that DSM is a critical point for topological phase transition, and the conclusion can apply to most of the DSM materials, not limited to the hexagonal material LiAuSe.



قيم البحث

اقرأ أيضاً

Band-crossings occurring on a mirror plane are compelled to form a nodal loop in the momentum space without spin-orbit coupling (SOC). In the presence of other equivalent mirror planes, multiple such nodal loops can combine to form interesting nodal- link structures. Here, based on first-principles calculations and an effective $mathbf{k.p}$ model analysis, we show that CaAuAs hosts a unique starfruit-like nodal-link structure in the bulk electronic dispersion in the absence of SOC. This nodal-link is comprised of three nodal loops, which cross each other at the time-reversal-invariant momentum point $A$. When the SOC is turned on, the nodal loops are gapped out, resulting in a stable Dirac semimetal state with a pair of Dirac points along the $mathrm{Gamma-A}$ direction in the Brillouin zone. The Dirac points are protected by the combination of time reversal, inversion, and $C_3$ rotation symmetries. We show how a systematic elimination of the symmetry constraints yields a Weyl semimetal and eventually a topological insulator state.
Three dimensional materials with strong spin-orbit coupling and magnetic interactions represent an opportunity to realize a variety of rare and potentially useful topological phases. In this work, we use first principles calculations to show that the recently synthesized material Bi2MnSe4 displays a combination of band inversion and magnetic interactions, leading to several topological phases. Bi2PbSe4, also studied, also displays band inversion and is a topological insulator. In bulk form, the ferromagnetic phase of Bi2MnSe4 is either a nodal line or Weyl semimetal, depending on the direction of the spins. When the spins are arranged in a layered antiferromagnetic configuration, the combination of time reversal plus a partial translation is a new symmetry, and the material instead becomes an antiferromagnetic topological insulator. However, the intrinsic TRS breaking at the surface of Bi2MnSe4 removes the typical Dirac cone feature, allowing the observation of the half-integer quantum anomalous Hall effect (AHC). Furthermore, we show that in thin film form, for some thicknesses, Bi2MnSe4 becomes a Chern insulator with a band gap of up to 58 meV. This combination of properties in a stoichiometric magnetic material makes Bi2MnSe4 an excellent candidate for displaying robust topological behavior.
284 - J. Cayssol 2013
We present a short pedagogical introduction to the physics of Dirac materials, restricted to graphene and two- dimensional topological insulators. We start with a brief reminder of the Dirac and Weyl equations in the particle physics context. Turning to condensed matter systems, semimetallic graphene and various Dirac insulators are introduced, including the Haldane and the Kane-Mele topological insulators. We also discuss briefly experimental realizations in materials with strong spin-orbit coupling.
The realization of Dirac and Weyl physics in solids has made topological materials one of the main focuses of condensed matter physics. Recently, the topic of topological nodal line semimetals, materials in which Dirac or Weyl-like crossings along sp ecial lines in momentum space create either a closed ring or line of degeneracies, rather than discrete points, has become a hot topic in topological quantum matter. Here we review the experimentally confirmed and theoretically predicted topological nodal line semimetals, focusing in particular on the symmetry protection mechanisms of the nodal lines in various materials. Three different mechanisms: a combination of inversion and time-reversal symmetry, mirror reflection symmetry, and non-symmorphic symmetry, and their robustness under the effect of spin orbit coupling are discussed. We also present a new Weyl nodal line material, the Te-square net compound KCu$_2$EuTe$_4$, which has several Weyl nodal lines including one extremely close to the Fermi level ($<$30 meV below E$_F$). Finally, we discuss potential experimental signatures for observing exotic properties of nodal line physics.
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transpo rt properties invite studies of relativistic physics in the solid state where their linearly dispersing Dirac bands cross at continuous lines with four-fold degeneracy. In materials studied up to now, the four-fold degeneracy, however, has been vulnerable to suppression by the ubiquitous spin-orbit coupling (SOC). Despite the current effort to discover 3D DNLSs that are robust to SOC by theory, positive experimental evidence is yet to emerge. In 2D DNLSs, because of the decreased total density of states as compared with their 3D counterparts, it is anticipated that their physical properties would be dominated by the electronic states defined by the DNL. It has been even more challenging, however, to discover robust 2D DNLSs against SOC because of their lowered symmetry; no such materials have yet been predicted by theory. By combining molecular beam epitaxy growth, STM, nc-AFM characterisation, with DFT calculations and space group theory analysis, here we reveal a novel class of 2D crystalline DNLSs that host the exact symmetry that protects them against SOC. The discovered quantum material is a brick phase 3-AL Bi(110), whose symmetry protection and thermal stability are imparted by the compressive vdW epitaxial growth on black phosphorus substrates. The BP substrate templates the growth of 3-AL Bi(110) nano-islands in a non-symmorphic space group structure. This crystalline symmetry protects the DNL electronic phase against SOC independent of any orbital or elemental factors. We theoretically establish that this intrinsic symmetry imparts a general, robust protection of DNL in a series of isostructural 2D quantum materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا