ﻻ يوجد ملخص باللغة العربية
The formation and evolution of cold diffuse clouds (CDCs), the parent objects of dense molecular clouds, affects both the star formation process and that of larger-scale galactic evolution. We have begun a pilot study of one CDCs dust content, with the goal of quantifying the abundances of different types of dust and relating these to the relative abundance of molecular gas, the clouds physical properties, and its general stage of development. Using photometry from AKARI and other surveys, we have extracted a sample spectral energy distribution (SED) of the CDC dust thermal emission over the near-infrared to submillimeter range. The extracted SED closely resembles others in the literature, confirming our isolation of the cloud emission from other sources along the sight line. We plan to fit this SED with dust models at each position in the cloud, automating our procedure to map out the structure of this CDC and others.
Whether ice in cold cosmic environments is physically separated from the silicate dust or mixed with individual silicate moieties is not known. However, different grain models give very different compositions and temperatures of grains. The aim of th
Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio
We confirm and discuss recently discovered cold HI clouds with column densities among the lowest ever detected. The column densities of Cold Neutral Medium (CNM) towards 3C286 and 3C287 are ~10^18 cm^-2, below an observational lower limit, and also b
Based on the analysis of available published data and archival data along 24 sightlines (5 of which are new) we derive more accurate estimates of the column densities of OH and CH towards diffuse/translucent clouds and revisit the typically observed
One of the surprises of the Herschel mission was the detection of ArH+ towards the Crab Nebula in emission and in absorption towards strong Galactic background sources. Although these detections were limited to the first quadrant of the Galaxy, the e