ترغب بنشر مسار تعليمي؟ اضغط هنا

MODetector (MOD): A Dual-Functional Optical Modulator-Detector for On-Chip Communication

98   0   0.0 ( 0 )
 نشر من قبل Shuai Sun
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Physical challenges at the device and interconnect level limit both network and computing energy efficiency. While photonics is being considered to address interconnect bottlenecks, optical routing is still limited by electronic circuitry, requiring substantial overhead for optical-electrical-optical conversion. Here we show a novel design of an integrated broadband photonic-plasmonic hybrid device termed MODetector featuring dual light modulation and detection function to act as an optical transceiver in the photonic network-on-chip. With over 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state, this MODetector provides 0.7 W/A responsivity in the detection state with 36 ps response time. This multi-functional device: (i) eliminates OEO conversion, (ii) reduces optical losses from photodetectors when not needed, and (iii) enables cognitive routing strategies for network-on-chips.

قيم البحث

اقرأ أيضاً

Integrated electrical and photonic circuits (PIC) operating at cryogenic temperatures are fundamental building blocks required to achieve scalable quantum computing, and cryogenic computing technologies. Optical interconnects offer better performance and thermal insulation than electrical wires and are imperative for true quantum communication. Silicon PICs have matured for room temperature applications but their cryogenic performance is limited by the absence of efficient low temperature electro-optic (EO) modulation. While detectors and lasers perform better at low temperature, cryogenic optical switching remains an unsolved challenge. Here we demonstrate EO switching and modulation from room temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3)-based devices. We report the nonlinear optical (NLO) properties of BaTiO3 in a temperature range which has previously not been explored, showing an effective Pockels coefficient of 200 pm/V at 4 K. We demonstrate the largest EO bandwidth (30 GHz) of any cryogenic switch to date, ultra-low-power tuning which is 10^9 times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our results demonstrate a missing component for cryogenic PICs. It removes major roadblocks for the realisation of novel cryogenic-compatible systems in the field of quantum computing and supercomputing, and for interfacing those systems with the real world at room-temperature.
Electro-optic signal modulation provides a key functionality in modern technology and information networks. Photonic integration has enabled not only miniaturizing photonic components, but also provided performance improvements due to co-design addre ssing both electrical and optical device rules. However the millimeter-to-centimeter large footprint of many foundry-ready photonic electro-optic modulators significantly limits scaling density. Furthermore, modulators bear a fundamental a frequency-response to energy-sensitive trade-off, a limitation that can be overcome with coupling-based modulators where the temporal response speed is decoupled from the optical cavity photo lifetime. Thus, the coupling effect to the resonator is modulated rather then tuning the index of the resonator itself. However, the weak electro-optic response of silicon limits such coupling modulator performance, since the micrometer-short overlap region of the waveguide-bus and a microring resonator is insufficient to induce signal modulation. To address these limitations, here we demonstrate a coupling-controlled electro-optic modulator by heterogeneously integrating a dual-gated indium-tin-oxide (ITO) phase shifter placed at the silicon microring-bus coupler region. Our experimental modulator shows about 4 dB extinction ratio on resonance, and a about 1.5 dB off resonance with a low insertion loss of 0.15 dB for a just 4 {mu}m short device demonstrating a compact high 10:1 modulation-to-loss ratio. In conclusion we demonstrate a coupling modulator using strongly index-changeable materials enabling compact and high-performing modulators using semiconductor foundry-near materials.
We present a chip-scale scanning dual-comb spectroscopy (SDCS) approach for broadband ultrahigh-resolution spectral acquisition. SDCS uses Si3N4 microring resonators that generate two single soliton micro-combs spanning 37 THz (300 nm) on the same ch ip from a single 1550-nm laser, forming a high-mutual-coherence dual-comb. We realize continuous tuning of the dual-comb system over the entire optical span of 37.5 THz with high precision using integrated microheater-based wavelength trackers. This continuous wavelength tuning is enabled by simultaneous tuning of the laser frequency and the two single soliton micro-combs over a full free spectral range of the microrings. We measure the SDCS resolution to be 319+-4.6 kHz. Using this SDCS system, we perform the molecular absorption spectroscopy of H13C14N over its 2.3 THz (18 nm)-wide overtone band, and show that the massively parallel heterodyning offered by the dual-comb expands the effective spectroscopic tuning speed of the laser by one order of magnitude. Our chip-scale SDCS opens the door to broadband spectrometry and massively parallel sensing with ultrahigh spectral resolution.
Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signals, eliminating the need for a separate LO. In contrast to SBS processing on-fiber, our solution provides phase and polarization stability while the narrow SBS linewidth allows for a record-breaking small guardband of ~265 MHz, resulting in higher spectral-efficiency than benchmark self-coherent schemes. This approach reveals comparable performance to state-of-the-art coherent optical receivers without requiring advanced DSP. Our demonstration develops a low-noise and frequency-preserving filter that synchronously regenerates a low-power narrowband optical tone that could relax the requirements on very-high-order modulation signaling and be useful in long-baseline interferometry for precision optical timing or reconstructing a reference tone for quantum-state measurements.
Superconducting digital circuits are a promising approach to build packaged-level integrated systems with high energy-efficiency and computational density. In such systems, performance of the data link between chips mounted on a multi-chip module (MC M) is a critical driver of performance. In this work we report a synchronous data link using Reciprocal Quantum Logic (RQL) enabled by resonant clock distribution on the chip and on the MCM carrier. The simple physical link has only four Josephson junctions and 3 fJ/bit dissipation, including a 300 W/W cooling overhead. The driver produces a signal with 35 GHz analog bandwidth and connects to a single-ended receiver via 20 $Omega$ Nb Passive Transmission Line (PTL). To validate this link, we have designed, fabricated and tested two 32$times$32 mm$^2$ MCMs with eight 5$times$5 mm$^2$ chips connected serially and powered with a meander clock, and with four 10$times$10 mm$^2$ chips powered with a 2 GHz resonant clock. The meander clock MCM validates performance of the data link components, and achieved 5.4 dB AC bias margin with no degradation relative to individual chip test. The resonator MCM validates synchronization between chips, with a measured AC bias margin up to 4.8 dB between two chips. The resonator MCM is capable of powering circuits of 4 million Josephson junctions across the four chips with a projected 10 Gbps serial data rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا