ﻻ يوجد ملخص باللغة العربية
We propose two possibilities to explain an excess of electron/positron flux around 1.4 TeV recently reported by Dark Matter Explore (DAMPE) in the framework of radiative seesaw models where one of them provides a fermionic dark matter candidate, and the other one provides a bosonic dark matter candidate. We also show unique features of both models regarding neutrino mass structure.
We discuss radiative seesaw models, in which an exact $Z_2times Z_2$ symmetry is imposed. Due to the exact $Z_2times Z_2$ symmetry, neutrino masses are generated at a two-loop level and at least two extra stable electrically neutral particles are pre
The singlet majoron model of seesaw neutrino mass is appended by one dark Majorana fermion singlet $chi$ with $L=2$ and one dark complex scalar singlet $zeta$ with $L=1$. This simple setup allows $chi$ to obtain a small radiative mass anchored by the
We propose an attractive model that excess of electron recoil events around 1-5 keV reported by the XENON1T collaboration nicely links to the tiny neutrino masses based on a radiative seesaw scenario. Our dark matter(DM) is an isospin singlet inert b
The flux of high-energy cosmic-ray electrons plus positrons recently measured by the DArk Matter Particle Explorer (DAMPE) exhibits a tentative peak excess at an energy of around $1.4$ TeV. In this paper, we consider the minimal gauged $U(1)_{B-L}$ m
We investigate whether right-handed neutrinos can play the role of the dark matter of the Universe and be generated by the freeze-out production mechanism. In the standard picture, the requirement of a long lifetime of the right-handed neutrinos impl