ﻻ يوجد ملخص باللغة العربية
We review the domain wall charm physics program of the RBC and UKQCD collaborations based on simulations including ensembles with physical pion mass. We summarise our current set-up and present a status update on the decay constants $f_D$, $f_{D_s}$, the charm quark mass, heavy-light and heavy-strange bag parameters and the ratio $xi$.
We present results showing that Domain Wall fermions are a suitable discretisation for the simulation of heavy quarks. This is done by a continuum scaling study of charm quarks in a Mobius Domain Wall formalism using a quenched set-up. We find that d
We present RBC/UKQCDs charm project using $N_f=2+1$ flavour ensembles with inverse lattice spacings in the range $1.73-2.77,mathrm{GeV}$ and two physical pion mass ensembles. Domain wall fermions are used for the light as well as the charm quarks. We
We present a study of charm physics using RBC/UKQCD 2+1 flavour physical point domain wall fermion ensembles for the light quarks as well as for the valence charm quark. After a brief motivation of domain wall fermions as a suitable heavy quark discr
We present RBC heavy-light meson spectroscopy with quenched DBW2 gauge configurations at lattice cutoff of about 3 GeV. Both heavy and light quarks are described by domain-wall fermions (DWF). The heavy quark mass ranges between 0.1 and 0.4 lattice u
We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discre