ﻻ يوجد ملخص باللغة العربية
Determining the energy transport mechanisms in flares remains a central goal in solar flares physics that is still not adequately answered by the standard flare model. In particular, the relative roles of particles and/or waves as transport mechanisms, the contributions of low energy protons and ions to the overall flare budget, and the limits of low energy non-thermal electron distribution are questions that still cannot be adequately reconciled with current instrumentation. In this White Paper submitted in response to the call for inputs to the Next Generation Solar Physics Mission review process initiated by JAXA, NASA and ESA in 2016, we outline the open questions in this area and possible instrumentation that could provide the required observations to help answer these and other flare-related questions.
This paper presents an overview of some recent observational and theoretical results on solar flares, with an emphasis on flare impulsive-phase chromospheric properties, including: electron diagnostics, optical and UV emission, and discoveries made b
We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We employ high-resolution X-ray spectra observed by the Si detector of the S
Solar flares are driven by the release of magnetic energy from reconnection events in the solar corona, whereafter energy is transported to the chromosphere, heating the plasma and causing the characteristic radiative losses. In the collisional thick
Observations of the Sun with the Atacama Large Millimeter Array have now started, and the thermal infrared will regularly be accessible from the NSFs Daniel K. Inouye Solar Telescope. Motivated by the prospect of these new data, and by recent flare o
In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M and X-class flare eve