ﻻ يوجد ملخص باللغة العربية
Resistance force exerted on an obstacle in a gravity-driven slow granular silo flow is studied by experiments and numerical simulations. In a two-dimensional granular silo, an obstacle is placed just above the exit. Then, steady discharge flow is made and its flow rate can be controlled by the width of exit and the position of obstacle. During the discharge of particles, flow rate and resistance force exerting on the obstacle are measured. Using the obtained data, a dimensionless number characterizing the force balance in granular flow is defined by the relation between the discharge flow rate and resistance-force decreasing rate. The dimensionless number is independent of flow rate. Rather, we find the weak shape dependence of the dimensionless number. This tendency is a unique feature for the resistance force in granular silo flow. It characterizes the effective flow width interacting with the obstacle in granular silo flow.
We propose an explanation for the onset of oscillations seen in numerical simulations of dense, inclined flows of inelastic, frictional spheres. It is based on a phase transition between disordered and ordered collisional states that may be interrupt
Granular fronts are a common yet unexplained phenomenon emerging during the gravity driven free-surface flow of concentrated suspensions. They are usually believed to be the result of fluid convection in combination with particle size segregation. Ho
We study the flow of elongated grains (wooden pegs of length $L$=20 mm with circular cross section of diameter $d_c$=6 and 8 mm) from a silo with a rotating bottom and a circular orifice of diameter $D$. In the small orifice range ($D/d<5$) clogs are
The shape of a microchannel during flow through it is instrumental to understanding the physics that govern various phenomena ranging from rheological measurements of fluids to separation of particles and cells. Two commonly used approaches for obtai
As a natural and functional behavior, various microorganisms exhibit gravitaxis by orienting and swimming upwards against gravity. Swimming autophoretic nanomotors described herein, comprising bimetallic nanorods, preferentially orient upwards and sw