ﻻ يوجد ملخص باللغة العربية
Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalog contains GRB parameters (peak energy, spectral indices, intensity) estimated fitting the gamma-ray SED of the total emission (fluence, flnc), and during the time of the peak flux pflx. Using contingency tables we studied the relationship of the models best fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis (CA) of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low energy spectral index is close to the canonical value of {alpha} = -2/3 during the peak flux. However, $alpha$ is ~ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.
Studying the GRBs gamma-ray spectra may reveal some physical information of Gamma-ray Bursts. The Fermi satellite observed more than two thousand GRBs. The FERMIGBRST catalog contains GRB parameters (peak energy, spectral indices, intensity) estimate
We present a search for gamma-ray bursts in the Fermi-GBM 10 year catalog that show similar characteristics to GRB 170817A, the first electromagnetic counterpart to a GRB identified as a binary neutron star (BNS) merger via gravitational wave observa
From past experiments the average power density spectrum (PDS) of GRBs with unknown redshift was found to be modelled from 0.01 to 1 Hz with a power-law, f^(-alpha), with alpha broadly consistent with 5/3. Recent analyses of the Swift/BAT catalogue s
We perform a stringent search for precursor emission of short gamma-ray bursts (SGRBs) from the Fermi/GBM data and find 16 precursor events with $gtrsim4.5sigma$ significance. We find that the durations of the main SGRB emission ($T_{rm GRB}$) and th
We present our temporal and spectral analyses of 29 bursts from SGR J0501+4516, detected with the Gamma-ray Burst Monitor onboard the Fermi Gamma-ray Space Telescope during the 13 days of the source activation in 2008 (August 22 to September 3). We f