ﻻ يوجد ملخص باللغة العربية
Objective: Absolute images have important applications in medical Electrical Impedance Tomography (EIT) imaging, but the traditional minimization and statistical based computations are very sensitive to modeling errors and noise. In this paper, it is demonstrated that D-bar reconstruction methods for absolute EIT are robust to such errors. Approach: The effects of errors in domain shape and electrode placement on absolute images computed with 2D D-bar reconstruction algorithms are studied on experimental data. Main Results: It is demonstrated with tank data from several EIT systems that these methods are quite robust to such modeling errors, and furthermore the artefacts arising from such modeling errors are similar to those occurring in classic time-difference EIT imaging. Significance: This study is promising for clinical applications where absolute EIT images are desirable, but previously thought impossible.
The first numerical implementation of a D-bar method in 3D using electrode data is presented. Results are compared to Calderons method as well as more common TV and smoothness regularization-based methods. D-bar methods are based on tailor-made non-l
Objective: To develop, and demonstrate the feasibility of, a novel image reconstruction method for absolute Electrical Impedance Tomography (a-EIT) that pairs deep learning techniques with real-time robust D-bar methods. Approach: A D-bar method is p
Electrical Impedance Tomography (EIT) aims to recover the internal conductivity and permittivity distributions of a body from electrical measurements taken on electrodes on the surface of the body. The reconstruction task is a severely ill-posed nonl
Coupled-resonance spectroscopy has been recently reported and applied for spectroscopic measurements and laser stabilizations. With coupled-resonance spectroscopy, one may indirectly measure some transitions between the excited states that are hard t
We present theoretical results of a low-loss all-optical switch based on electromagnetically induced transparency and the classical Zeno effect in a microdisk resonator. We show that a control beam can modify the atomic absorption of the evanescent f