ترغب بنشر مسار تعليمي؟ اضغط هنا

Causal inference taking into account unobserved confounding

92   0   0.0 ( 0 )
 نشر من قبل Minna Genb\\\"ack
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Causal inference with observational data can be performed under an assumption of no unobserved confounders (unconfoundedness assumption). There is, however, seldom clear subject-matter or empirical evidence for such an assumption. We therefore develop uncertainty intervals for average causal effects based on outcome regression estimators and doubly robust estimators, which provide inference taking into account both sampling variability and uncertainty due to unobserved confounders. In contrast with sampling variation, uncertainty due unobserved confounding does not decrease with increasing sample size. The intervals introduced are obtained by deriving the bias of the estimators due to unobserved confounders. We are thus also able to contrast the size of the bias due to violation of the unconfoundedness assumption, with bias due to misspecification of the models used to explain potential outcomes. This is illustrated through numerical experiments where bias due to moderate unobserved confounding dominates misspecification bias for typical situations in terms of sample size and modeling assumptions. We also study the empirical coverage of the uncertainty intervals introduced and apply the results to a study of the effect of regular food intake on health. An R-package implementing the inference proposed is available.

قيم البحث

اقرأ أيضاً

76 - BaoLuo Sun , Ting Ye 2020
Although the exposure can be randomly assigned in studies of mediation effects, any form of direct intervention on the mediator is often infeasible. As a result, unmeasured mediator-outcome confounding can seldom be ruled out. We propose semiparametr ic identification of natural direct and indirect effects in the presence of unmeasured mediator-outcome confounding by leveraging heteroskedasticity restrictions on the observed data law. For inference, we develop semiparametric estimators that remain consistent under partial misspecifications of the observed data model. We illustrate the proposed estimators through both simulations and an application to evaluate the effect of self-efficacy on fatigue among health care workers during the COVID-19 outbreak.
148 - Yifan Cui , Hongming Pu , Xu Shi 2020
Skepticism about the assumption of no unmeasured confounding, also known as exchangeability, is often warranted in making causal inferences from observational data; because exchangeability hinges on an investigators ability to accurately measure cova riates that capture all potential sources of confounding. In practice, the most one can hope for is that covariate measurements are at best proxies of the true underlying confounding mechanism operating in a given observational study. In this paper, we consider the framework of proximal causal inference introduced by Tchetgen Tchetgen et al. (2020), which while explicitly acknowledging covariate measurements as imperfect proxies of confounding mechanisms, offers an opportunity to learn about causal effects in settings where exchangeability on the basis of measured covariates fails. We make a number of contributions to proximal inference including (i) an alternative set of conditions for nonparametric proximal identification of the average treatment effect; (ii) general semiparametric theory for proximal estimation of the average treatment effect including efficiency bounds for key semiparametric models of interest; (iii) a characterization of proximal doubly robust and locally efficient estimators of the average treatment effect. Moreover, we provide analogous identification and efficiency results for the average treatment effect on the treated. Our approach is illustrated via simulation studies and a data application on evaluating the effectiveness of right heart catheterization in the intensive care unit of critically ill patients.
Inferring causal relationships or related associations from observational data can be invalidated by the existence of hidden confounding. We focus on a high-dimensional linear regression setting, where the measured covariates are affected by hidden c onfounding and propose the {em Doubly Debiased Lasso} estimator for individual components of the regression coefficient vector. Our advocated method simultaneously corrects both the bias due to estimation of high-dimensional parameters as well as the bias caused by the hidden confounding. We establish its asymptotic normality and also prove that it is efficient in the Gauss-Markov sense. The validity of our methodology relies on a dense confounding assumption, i.e. that every confounding variable affects many covariates. The finite sample performance is illustrated with an extensive simulation study and a genomic application.
The ability to generalize from observed to new related environments is central to any form of reliable machine learning, yet most methods fail when moving beyond i.i.d data. This work argues that in some cases the reason lies in a misapreciation of t he causal structure in data; and in particular due to the influence of unobserved confounders which void many of the invariances and principles of minimum error between environments presently used for the problem of domain generalization. This observation leads us to study generalization in the context of a broader class of interventions in an underlying causal model (including changes in observed, unobserved and target variable distributions) and to connect this causal intuition with an explicit distributionally robust optimization problem. From this analysis derives a new proposal for model learning with explicit generalization guarantees that is based on the partial equality of error derivatives with respect to model parameters. We demonstrate the empirical performance of our approach on healthcare data from different modalities, including image, speech and tabular data.
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients -- are estimated by cross sectional sample moments of GMM estimators applied separately to the time series of each individual. To deal with the incidental parameter problem introduced by the noise of the within-individual estimators in short panels, we develop bias corrections. These corrections are based on higher-order asymptotic expansions of the GMM estimators and produce improved point and interval estimates in moderately long panels. Under asymptotic sequences where the cross sectional and time series dimensions of the panel pass to infinity at the same rate, the uncorrected estimator has an asymptotic bias of the same order as the asymptotic variance. The bias corrections remove the bias without increasing variance. An empirical example on cigarette demand based on Becker, Grossman and Murphy (1994) shows significant heterogeneity in the price effect across U.S. states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا