ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning the pairing interaction in a $d$-wave superconductor by paramagnons injected through interfaces

105   0   0.0 ( 0 )
 نشر من قبل Yuichi Kasahara
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unconventional superconductivity and magnetism are intertwined on a microscopic level in a wide class of materials. A new approach to this most fundamental and hotly debated issue focuses on the role of interactions between superconducting electrons and bosonic fluctuations at the interface between adjacent layers in heterostructures. Here we fabricate hybrid superlattices consisting of alternating atomic layers of heavy-fermion superconductor CeCoIn$_5$ and antiferromagnetic (AFM) metal CeRhIn$_5$, in which the AFM order can be suppressed by applying pressure. We find that the superconducting and AFM states coexist in spatially separated layers, but their mutual coupling via the interface significantly modifies the superconducting properties. An analysis of upper critical fields reveals that near the critical pressure where AFM order vanishes, the force binding superconducting electron-pairs acquires an extremely strong-coupling nature. This demonstrates that superconducting pairing can be tuned non-trivially by magnetic fluctuations (paramagnons) injected through the interface, leading to maximization of the pairing interaction.

قيم البحث

اقرأ أيضاً

We present a self-consistent real space formulation of spin-fluctuation mediated d-wave pairing. By calculating all relevant inhomogeneous spin and charge susceptibilities in real space within the random phase approximation (RPA), we obtain the effec tive pairing interaction and study its spatial dependence near both local potential and hopping impurities. A remarkably large enhancement of the pairing interaction may be obtained near the impurity site. We discuss the relevance of our result to inhomogeneities observed by scanning tunneling spectroscopy on the surface of cuprate superconductors.
The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by sym metry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes.
Theories based on the coupling between spin fluctuations and fermionic quasiparticles are among the leading contenders to explain the origin of high-temperature superconductivity, but estimates of the strength of this interaction differ widely. Here we analyze the charge- and spin-excitation spectra determined by angle-resolved photoemission and inelastic neutron scattering, respectively, on the same crystals of the high-temperature superconductor YBa2Cu3O6.6. We show that a self-consistent description of both spectra can be obtained by adjusting a single parameter, the spin-fermion coupling constant. In particular, we find a quantitative link between two spectral features that have been established as universal for the cuprates, namely high-energy spin excitations and kinks in the fermionic band dispersions along the nodal direction. The superconducting transition temperature computed with this coupling constant exceeds 150 K, demonstrating that spin fluctuations have sufficient strength to mediate high-temperature superconductivity.
76 - C. Stock , C. Broholm , J. Hudis 2007
Neutron scattering is used to probe antiferromagnetic spin fluctuations in the d-wave heavy fermion superconductor CeCoIn$_{5}$ (T$_{c}$=2.3 K). Superconductivity develops from a state with slow ($hbarGamma$=0.3 $pm$ 0.15 meV) commensurate (${bf{Q_0} }$=(1/2,1/2,1/2)) antiferromagnetic spin fluctuations and nearly isotropic spin correlations. The characteristic wavevector in CeCoIn$_{5}$ is the same as CeIn$_{3}$ but differs from the incommensurate wavevector measured in antiferromagnetically ordered CeRhIn$_{5}$. A sharp spin resonance ($hbarGamma<0.07$ meV) at $hbar omega$ = 0.60 $pm$ 0.03 meV develops in the superconducting state removing spectral weight from low-energy transfers. The presence of a resonance peak is indicative of strong coupling between f-electron magnetism and superconductivity and consistent with a d-wave gap order parameter satisfying $Delta({bf q+Q_0})=-Delta({bf q})$.
74 - M. Franz 2002
High-$T_c$ cuprates differ from conventional superconductors in three crucial aspects: the superconducting state descends from a strongly correlated Mott-Hubbard insulator, the order parameter exhibits d-wave symmetry and superconducting fluctuations play an all important role. We formulate a theory of the pseudogap state in the cuprates by taking the advantage of these unusual features. The effective low energy theory within the pseudogap phase is shown to be equivalent to the (anisotropic) quantum electrodynamics in (2+1) space-time dimensions (QED$_3$). The role of Dirac fermions is played by the nodal BdG quasiparticles while the massless gauge field arises through unbinding of quantum vortex-antivortex degrees of freedom. A detailed derivation of this QED$_3$ theory is given and some of its main physical consequences are inferred for the pseudogap state. We focus on the properties of symmetric QED$_3$ and propose that inside the pairing protectorate it assumes the role reminiscent of that played by the Fermi liquid theory in conventional metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا