ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA Observations of a High-density Core, MC27/L1521F in Taurus: Dynamical Gas Interaction at the Possible Site of a Multiple Star Formation

290   0   0.0 ( 0 )
 نشر من قبل Kazuki Tokuda
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kazuki Tokuda




اسأل ChatGPT حول البحث

We present the results of ALMA observations of dust continuum emission and molecular rotational lines toward a dense core, MC27 (aka L1521F), which is considered to be very close to the first core phase. We revealed the spatial/velocity structures of the core are very complex and and suggest that the initial condition of star formation is highly dynamical.

قيم البحث

اقرأ أيضاً

We report ALMA observations in 0.87 mm continuum and $^{12}$CO ($J$ = 3--2) toward a very low-luminosity ($<$0.1 $L_{odot}$) protostar, which is deeply embedded in one of the densest core MC27/L1521F, in Taurus with an indication of multiple star for mation in a highly dynamical environment. The beam size corresponds to $sim$20 AU, and we have clearly detected blueshifted/redshifted gas in $^{12}$CO associated with the protostar. The spatial/velocity distributions of the gas show there is a rotating disk with a size scale of $sim$10 AU, a disk mass of $sim$10$^{-4}$ $M_{odot}$ and a central stellar mass of $sim$0.2 $M_{odot}$. The observed disk seems to be detached from the surrounding dense gas, although it is still embedded at the center of the core whose density is $sim$10$^{6}$ cm$^{-3}$. The current low-outflow activity and the very low luminosity indicate that the mass accretion rate onto the protostar is extremely low in spite of a very early stage of star formation. We may be witnessing the final stage of the formation of $sim$0.2 $M_{odot}$ protostar. However, we cannot explain the observed low luminosity with the standard pre-main-sequence evolutionary track unless we assume cold accretion with an extremely small initial radius of the protostar ($sim$0.65 $R_odot$). These facts may challenge our current understanding of the low mass star formation, in particular the mass accretion process onto the protostar and the circumstellar disk.
We report ALMA Cycle 3 observations in CO isotopes toward a dense core, MC27/L1521F in Taurus, which is considered to be at an early stage of multiple star formation in a turbulent environment. Although most of the high-density parts of this core are considered to be as cold as $sim$10 K, high-angular resolution ($sim$20 au) observations in $^{12}$CO ($J$ = 3--2) revealed complex warm ($>$15--60 K) filamentary/clumpy structures with the sizes from a few tens of au to $sim$1,000 au. The interferometric observations of $^{13}$CO and C$^{18}$O show that the densest part with arc-like morphologies associated with the previously identified protostar and condensations are slightly redshifted from the systemic velocity of the core. We suggest that the warm CO clouds may be consequences of shock heating induced by interactions among the different density/velocity components that originated from the turbulent motions in the core. However, such a small-scale and fast turbulent motion does not correspond to a simple extension of the line-width-size relation (i.e., Larson{}s law), and thus the actual origin remains to be studied. The high-angular resolution CO observations are expected to be essential in detecting small-scale turbulent motions in dense cores and to investigate protostar formation therein.
We present the results of ALMA observations in $^{12}$CO($J=2-1$), $^{13}$CO($J=2-1$), and C$^{18}$O($J=2-1$) lines and 1.3 mm continuum emission toward a massive ($sim 10^6 M_{odot}$) giant molecular cloud associated with the giant H II region NGC 6 04 in one of the nearest spiral galaxy M33 at an angular resolution of 0.44 $times$ 0.27 (1.8 pc $times$ 1.1 pc). The $^{12}$CO and $^{13}$CO images show highly complicated molecular structures composed of a lot of filaments and shells whose lengths are 5 -- 20 pc. We found three 1.3 mm continuum sources as dense clumps at edges of two shells and also at an intersection of several filaments. We examined the velocity structures of $^{12}$CO($J=2-1$) emission in the shells and filaments containing dense clumps, and concluded that expansion of the H II regions cannot explain the formation of such dense cores. Alternatively, we suggest that cloud--cloud collisions induced by an external H I gas flow and the galactic rotation compressed the molecular material into dense filaments/shells as ongoing high-mass star formation sites. We propose that multiple gas converging/colliding events with a velocity of a few tens km s$^{-1}$ are necessary to build up NGC 604, the most significant cluster-forming complex in the Local Group of galaxies.
We observed the pre-stellar core L1521F in dust emission at 1.2mm and in two transitions each of N2H+, N2D+, C18O, and C17O in order to increase the sample of well studied centrally concentrated and chemically evolved starless cores, likely on the ve rge of star formation, and to determine the initial conditions for low--mass star formation in the Taurus Molecular Cloud. We derived in this object a molecular hydrogen number density n(H2) ~ 10^6 cm-3 and a CO depletion factor, integrated along the line of sight, fD ~ 15 in the central 20, similar to the pre-stellar core L1544. However, the N(N2D+)/N(N2H+) column density ratio is ~0.1, a factor of about 2 lower than that found in L1544. The observed relation between the deuterium fractionation and the integrated CO depletion factor across the core can be reproduced by chemical models if N2H+ is slightly (factor of ~2 in fractional abundance) depleted in the central 3000 AU. The N2H+ and N2D+ linewidths in the core center are ~0.3 km/s, significantly larger than in other more quiescent Taurus starless cores but similar to those observed in the center of L1544. The kinematical behaviour of L1521F is more complex than seen in L1544, and a model of contraction due to ambipolar diffusion is only marginally consistent with the present data. Other velocity fields, perhaps produced by unresolved substructure, are present. Both chemical and kinematical analyses suggest that L1521F is less evolved than L1544, but, in analogy with L1544, it is approaching the ``critical state.
We present the results of our ALMA observations of eleven (ultra)luminous infrared galaxies ((U)LIRGs) at J=4-3 of HCN, HCO+, HNC and J=3-2 of HNC. This is an extension of our previously published HCN and HCO+ J=3-2 observations to multiple rotationa l J-transitions of multiple molecules, to investigate how molecular emission line flux ratios vary at different J-transitions. We confirm that ULIRGs that contain or may contain luminous obscured AGNs tend to show higher HCN-to-HCO+ flux ratios than starburst galaxies, both at J=4-3 and J=3-2. For selected HCN-flux-enhanced AGN-important ULIRGs, our isotopologue H13CN, H13CO+, and HN13C J=3-2 line observations suggest a higher abundance of HCN than HCO+ and HNC, which is interpreted to be primarily responsible for the elevated HCN flux in AGN-important galaxies. For such sources, the intrinsic HCN-to-HCO+ flux ratios after line opacity correction will be higher than the observed ratios, making the separation between AGNs and starbursts even larger. The signature of the vibrationally excited (v2=1f) HCN J=4-3 emission line is seen in one ULIRG, IRAS 12112-0305 NE. P Cygni profiles are detected in the HCO+ J=4-3 and J=3-2 lines toward IRAS 15250+3609, with an estimated molecular outflow rate of ~250-750 Mo/year. The SiO J=6-5 line also exhibits a P Cygni profile in IRAS 12112+0305 NE, suggesting the presence of shocked outflow activity. Shock tracers are detected in many sources, suggesting ubiquitous shock activity in the nearby ULIRG population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا