ﻻ يوجد ملخص باللغة العربية
In this paper, we determine the covering radius and a class of deep holes for Gabidulin codes with both rank metric and Hamming metric. Moreover, we give a necessary and sufficient condition for deciding whether a word is not a deep hole for Gabidulin codes, by which we study the error distance of a special class of words to certain Gabidulin codes.
This paper presents the first decoding algorithm for Gabidulin codes over Galois rings with provable quadratic complexity. The new method consists of two steps: (1) solving a syndrome-based key equation to obtain the annihilator polynomial of the err
Projective Reed-Solomon (PRS) codes are Reed-Solomon codes of the maximum possible length q+1. The classification of deep holes --received words with maximum possible error distance-- for PRS codes is an important and difficult problem. In this paper
We address the problem of decoding Gabidulin codes beyond their unique error-correction radius. The complexity of this problem is of importance to assess the security of some rank-metric code-based cryptosystems. We propose an approach that introduce
We study the problem of classifying deep holes of Reed-Solomon codes. We show that this problem is equivalent to the problem of classifying MDS extensions of Reed-Solomon codes by one digit. This equivalence allows us to improve recent results on the
This work compares the performance of software implementations of different Gabidulin decoders. The parameter sets used within the comparison stem from their applications in recently proposed cryptographic schemes. The complexity analysis of the deco