ﻻ يوجد ملخص باللغة العربية
We show how to realize topologically protected crossings of three energy bands, integer-spin analogs of Weyl fermions, in three-dimensional optical lattices. Our proposal only involves ultracold atom techniques that have already been experimentally demonstrated and leads to isolated triple-point crossings (TPCs) which are required to exist by a novel combination of lattice symmetries. The symmetries also allow for a new type of topological object, the type-II, or tilted, TPC. Our Rapid Communication shows that spin-1 Weyl points, which have not yet been observed in the bandstructure of crystals, are within reach of ultracold atom experiments.
Nature creates electrons with two values of the spin projection quantum number. In certain applications, it is important to filter electrons with one spin projection from the rest. Such filtering is not trivial, since spin-dependent interactions are
Acoustic phonon in a crystalline solid is a well-known and ubiquitous example of elementary excitation with a triple degeneracy in the band structure. Because of the Nambu-Goldstone theorem, this triple degeneracy is always present in the phonon band
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden
We present an effective and fast (few microseconds) procedure for transferring ultra-cold atoms from the ground state in a harmonic trap into the desired bands of an optical lattice. Our shortcut method is a designed pulse sequence where the time dur
Spin-orbit coupling is a fundamental mechanism that connects the spin of a charge carrier with its momentum. Likewise, in the optical domain, a synthetic spin-orbit coupling is accessible, for instance, by engineering optical anisotropies in photonic