ترغب بنشر مسار تعليمي؟ اضغط هنا

The topological surface state of $alpha$-Sn on InSb(001) as studied by photoemission

378   0   0.0 ( 0 )
 نشر من قبل Victor A. Rogalev
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the electronic structure of the elemental topological semimetal $alpha$-Sn on InSb(001). High-resolution angle-resolved photoemission data allow to observe the topological surface state (TSS) that is degenerate with the bulk band structure and show that the former is unaffected by different surface reconstructions. An unintentional $p$-type doping of the as-grown films was compensated by deposition of potassium or tellurium after the growth, thereby shifting the Dirac point of the surface state below the Fermi level. We show that, while having the potential to break time-reversal symmetry, iron impurities with a coverage of up to 0.25 monolayers do not have any further impact on the surface state beyond that of K or Te. Furthermore, we have measured the spin-momentum locking of electrons from the TSS by means of spin-resolved photoemission. Our results show that the spin vector lies fully in-plane, but it also has a finite radial component. Finally, we analyze the decay of photoholes introduced in the photoemission process, and by this gain insight into the many-body interactions in the system. Surprisingly, we extract quasiparticle lifetimes comparable to other topological materials where the TSS is located within a bulk band gap. We argue that the main decay of photoholes is caused by intraband scattering, while scattering into bulk states is suppressed due to different orbital symmetries of bulk and surface states.

قيم البحث

اقرأ أيضاً

We report on the electronic structure of $alpha$-Sn films in the very low thickness regime grown on InSb(111)A. High-resolution low photon energies angle-resolved photoemission (ARPES) allows for the direct observation of the linearly dispersing 2D t opological surface states (TSSs) that exist between the second valence band and the conduction band. The Dirac point of this TSS was found to be 200meV below the Fermi level in 10-nm-thick $alpha$-Sn films, which enables the observation of the hybridization gap opening at the Dirac point of the TSS for thinner films. The crossover to a quasi-2D electronic structure is accompanied by a full gap opening at the Brillouin zone center, in agreement with our density functional theory calculations. We further identify the thickness regime of $alpha$-Sn films where the hybridization gap in TSS coexists with the topologically non-trivial electronic structure and one can expect the presence of a 1D helical edge states.
100 - Q. Yao , Y. P. Du , X. J. Yang 2016
PtBi2 with a layered trigonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high resolution angle-resolved photoemission spectroscopy, we pres ent a systematic study on its bulk and surface electronic structure. Through careful comparison with first-principle calculations, our experiment distinguishes the low-lying bulk bands from entangled surface states, allowing the estimation of the real stoichiometry of samples. We find significant electron doping in PtBi2, implying a substantial Bi deficiency induced disorder therein. We discover a Dirac-cone-like surface state on the boundary of the Brillouin zone, which is identified as an accidental Dirac band without topological protection. Our findings exclude quantum-limit-induced linear band dispersion as the cause of the unconventional large linear magnetoresistance.
A 1D metallic surface state was created on an anisotropic InSb(001) surface covered with Bi. Angle-resolved photoelectron spectroscopy (ARPES) showed a 1D Fermi contour with almost no 2D distortion. Close to the Fermi level ($E_{rm F}$), the angle-in tegrated photoelectron spectra showed power-law scaling with the binding energy and temperature. The ARPES plot above $E_{rm F}$ obtained thanks to thermally broadened Fermi edge at room temperature showed a 1D state with continuous metallic dispersion across $E_{rm F}$ and power-law intensity suppression around $E_{rm F}$. These results strongly suggest a Tomonaga-Luttinger liquid on the Bi/InSb(001) surface.
Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated w ith bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy (ARPES), we have observed such bulk Dirac cones in epitaxially-grown {alpha}-Sn films on InSb(111), the first such TDS system realized in an elemental form. First-principles calculations confirm that epitaxial strain is key to the formation of the TDS phase. A phase diagram is established that connects the 3D TDS phase through a singular point of a zero-gap semimetal phase to a topological insulator (TI) phase. The nature of the Dirac cone crosses over from 3D to 2D as the film thickness is reduced.
291 - A. Yamasaki , S. Imada , T. Nanba 2002
Pr 4f electronic states in Pr-based filled skutterudites PrT4X12(T=Fe and Ru; X=P and Sb) have been studied by high-resolution bulk-sensitive Pr 3d-4f resonance photoemission. A very strong spectral intensity is observed just below the Fermi level in the heavy-fermion system PrFe4P12. The increase of its intensity at lower temperatures is observed. We speculate that this is the Kondo resonance of Pr, the origin of which is attributed to the strong hybridization between the Pr 4f and the conduction electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا