ترغب بنشر مسار تعليمي؟ اضغط هنا

The MUSE 3D view of feedback in a high-metallicity radio galaxy at z = 2.9

78   0   0.0 ( 0 )
 نشر من قبل Marckelson Silva Ph.D
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed study of the kinematic, chemical and excitation properties of the giant Ly$alpha$ emitting nebula and the giant ion{H}{I} absorber associated with the $z = 2.92$ radio galaxy MRC 0943--242, using spectroscopic observations from VLT/MUSE, VLT/X-SHOOTER and other instruments. Together, these data provide a wide range of rest-frame wavelength (765 AA$,$ -- 6378 AA$,$ at $z = 2.92$) and 2D spatial information. We find clear evidence for jet gas interactions affecting the kinematic properties of the nebula, with evidence for both outflows and inflows being induced by radio-mode feedback. We suggest that the regions of relatively lower ionization level, spatially correlated with the radio hotspots, may be due to localised compression of photoionized gas by the expanding radio source, thereby lowering the ionization parameter, or due to a contribution from shock-heating. We find that photoionization of super-solar metallicity gas ($Z/Z_{odot}$ = 2.1) by an AGN-like continuum ($alpha$=--1.0) at a moderate ionization parameter ($U$ = 0.018) gives the best overall fit to the complete X-SHOOTER emission line spectrum. We identify a strong degeneracy between column density and Doppler parameter such that it is possible to obtain a reasonable fit to the ion{H}{I} absorption feature across the range log N(ion{H}{I}/cm$^{-2}$) = 15.20 and 19.63, with the two best-fitting occurring near the extreme ends of this range. The extended ion{H}{I} absorber is blueshifted relative to the emission line gas, but shows a systematic decrease in blueshift towards larger radii, consistent with a large scale expanding shell.

قيم البحث

اقرأ أيضاً

Most molecular gas studies of $z > 2.5$ galaxies are of intrinsically bright objects, despite the galaxy population being primarily normal galaxies with less extreme star formation rates. Observations of normal galaxies at high redshift provide a mor e representative view of galaxy evolution and star formation, but such observations are challenging to obtain. In this work, we present ALMA $rm ^{12}CO(J = 3 rightarrow 2)$ observations of a sub-millimeter selected galaxy group at $z = 2.9$, resulting in spectroscopic confirmation of seven images from four member galaxies. These galaxies are strongly lensed by the MS 0451.6-0305 foreground cluster at $z = 0.55$, allowing us to probe the molecular gas content on levels of $rm 10^9-10^{10} ; M_odot$. Four detected galaxies have molecular gas masses of $rm (0.2-13.1) times 10^{10} ; M_odot$, and the non-detected galaxies have inferred molecular gas masses of $rm < 8.0 times 10^{10} ; M_odot$. We compare these new data to a compilation of 546 galaxies up to $z = 5.3$, and find that depletion times decrease with increasing redshift. We then compare the depletion times of galaxies in overdense environments to the field scaling relation from the literature, and find that the depletion time evolution is steeper for galaxies in overdense environments than for those in the field. More molecular gas measurements of normal galaxies in overdense environments at higher redshifts ($z > 2.5$) are needed to verify the environmental dependence of star formation and gas depletion.
Recently, Saxena et al. (2018) reported the discovery of a possible radio galaxy, J1530$+$1049 at a redshift of z=5.72. We observed the source with the European Very Long Baseline Interferometry Network at $1.7$ GHz. We detected two faint radio featu res with a separation of $sim 400$ mas. The radio power calculated from the VLA flux density by Saxena et al. (2018), and the projected source size derived from our EVN data place J1530$+$1049 among the medium-sized symmetric objects (MSOs) which are thought to be young counterparts of radio galaxies (An and Baan 2012). Thus, our finding is consistent with a radio galaxy in an early phase of its evolution as proposed by Saxena et al. (2018).
143 - E. Iani , A. Zanella , J. Vernet 2021
Giant star-forming regions (clumps) are widespread features of galaxies at $z approx 1-4$. Theory predicts that they can play a crucial role in galaxy evolution if they survive to stellar feedback for > 50 Myr. Numerical simulations show that clumps survival depends on the stellar feedback recipes that are adopted. Up to date, observational constraints on both clumps outflows strength and gas removal timescale are still uncertain. In this context, we study a line-emitting galaxy at redshift $z simeq 3.4$ lensed by the foreground galaxy cluster Abell 2895. Four compact clumps with sizes $lesssim$ 280 pc and representative of the low-mass end of clumps mass distribution (stellar masses $lesssim 2times10^8 {rm M}_odot$) dominate the galaxy morphology. The clumps are likely forming stars in a starbursting mode and have a young stellar population ($sim$ 10 Myr). The properties of the Lyman-$alpha$ (Ly$alpha$) emission and nebular far-ultraviolet absorption lines indicate the presence of ejected material with global outflowing velocities of $sim$ 200-300 km/s. Assuming that the detected outflows are the consequence of star formation feedback, we infer an average mass loading factor ($eta$) for the clumps of $sim$ 1.8 - 2.4 consistent with results obtained from hydro-dynamical simulations of clumpy galaxies that assume relatively strong stellar feedback. Assuming no gas inflows (semi-closed box model), the estimates of $eta$ suggest that the timescale over which the outflows expel the molecular gas reservoir ($simeq 7times 10^8 text{M}_odot$) of the four detected low-mass clumps is $lesssim$ 50 Myr.
In this paper we present Multi Unit Spectroscopic Explorer (MUSE) integral field unit spectroscopic observations of the $sim70times30$ kpc$^2$ Ly$alpha$ halo around the radio galaxy 4C04.11 at $z = 4.5077$. High-redshift radio galaxies (HzRGs) are ho sted by some of the most massive galaxies known at any redshift and are unique markers of concomitant powerful active galactic nucleus (AGN) activity and star formation episodes. We map the emission and kinematics of the Ly$alpha$ across the halo as well as the kinematics and column densities of eight HI absorbing systems at $-3500 < Delta v < 0$ km s$^{-1}$. We find that the strong absorber at $Delta v sim 0,rm km,s^{-1}$ has a high areal coverage ($30times30$ kpc$^2$), being detected across a large extent of the Ly$alpha$ halo, a significant column density gradient along the southwest to northeast direction, and a velocity gradient along the radio jet axis. We propose that the absorbing structure, which is also seen in CIV and NV absorption, represents an outflowing metal-enriched shell driven by a previous AGN or star formation episode within the galaxy and is now caught up by the radio jet, leading to jet-gas interactions. These observations provide evidence that feedback from AGN in some of the most massive galaxies in the early Universe may play an important role in redistributing material and metals in their environments.
85 - B. Balmaverde 2018
We report observations of the radio galaxy 3C317 (at z=0.0345) located at the center of the Abell cluster A2052, obtained with the VLT/MUSE integral field spectrograph. The Chandra images of this cluster show cavities in the X-ray emitting gas, which were produced by the expansion of the radio lobes inflated by the active galactic nucleus (AGN). Our exquisite MUSE data show with unprecedented detail the complex network of line emitting filaments enshrouding the northern X-ray cavity. We do not detect any emission lines from the southern cavity, with a luminosity asymmetry between the two regions higher than about 75. The emission lines produced by the warm phase of the interstellar medium (WIM) enable us to obtain unique information on the properties of the emitting gas. We find dense gas (up to 270 cm-3) that makes up part of a global quasi spherical outflow that is driven by the radio source, and obtain a direct estimate of the expansion velocity of the cavities (265 km s-1). The emission lines diagnostic rules out ionization from the AGN or from star-forming regions, suggesting instead ionization from slow shocks or from cosmic rays. The striking asymmetric line emission observed between the two cavities contrasts with the less pronounced differences between the north and south sides in the hot gas; this represents a significant new ingredient for our understanding of the process of the exchange of energy between the relativistic plasma and the external medium. We conclude that the expanding radio lobes displace the hot tenuous phase of the interstellar medium (ISM), but also impact the colder and denser ISM phases. These results show the effects of the AGN on its host and the importance of radio mode feedback.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا