ترغب بنشر مسار تعليمي؟ اضغط هنا

iPTF Survey for Cool Transients

104   0   0.0 ( 0 )
 نشر من قبل Scott Adams
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed a wide-area (2000 deg$^{2}$) g and I band experiment as part of a two month extension to the Intermediate Palomar Transient Factory. We discovered 36 extragalactic transients including iPTF17lf, a highly reddened local SN Ia, iPTF17bkj, a new member of the rare class of transitional Ibn/IIn supernovae, and iPTF17be, a candidate luminous blue variable outburst. We do not detect any luminous red novae and place an upper limit on their rate. We show that adding a slow-cadence I band component to upcoming surveys such as the Zwicky Transient Facility will improve the photometric selection of cool and dusty transients.

قيم البحث

اقرأ أيضاً

We identify minimal observing cadence requirements that enable photometric astronomical surveys to detect and recognize fast and explosive transients and fast transient features. Observations in two different filters within a short time window (e.g., g-and-i, or r-and-z, within < 0.5 hr) and a repeat of one of those filters with a longer time window (e.g., > 1.5 hr) are desirable for this purpose. Such an observing strategy delivers both the color and light curve evolution of transients on the same night. This allows the identification and initial characterization of fast transient -- or fast features of longer timescale transients -- such as rapidly declining supernovae, kilonovae, and the signatures of SN ejecta interacting with binary companion stars or circumstellar material. Some of these extragalactic transients are intrinsically rare and generally all hard to find, thus upcoming surveys like the Large Synoptic Survey Telescope (LSST) could dramatically improve our understanding of their origin and properties. We colloquially refer to such a strategy implementation for the LSST as the Presto-Color strategy (rapid-color). This cadences minimal requirements allow for overall optimization of a survey for other science goals.
The ability to quickly detect transient sources in optical images and trigger multi-wavelength follow up is key for the discovery of fast transients. These include events rare and difficult to detect such as kilonovae, supernova shock breakout, and o rphan Gamma-ray Burst afterglows. We present the Mary pipeline, a (mostly) automated tool to discover transients during high-cadenced observations with the Dark Energy Camera (DECam) at CTIO. The observations are part of the Deeper Wider Faster program, a multi-facility, multi-wavelength program designed to discover fast transients, including counterparts to Fast Radio Bursts and gravitational waves. Our tests of the Mary pipeline on DECam images return a false positive rate of ~2.2% and a missed fraction of ~3.4% obtained in less than 2 minutes, which proves the pipeline to be suitable for rapid and high-quality transient searches. The pipeline can be adapted to search for transients in data obtained with imagers other than DECam.
There has been speculation of a class of relativistic explosions with an initial Lorentz factor smaller than that of classical Gamma-Ray Bursts (GRBs). These dirty fireballs would lack prompt GRB emission but could be pursued via their optical afterg low, appearing as transients that fade overnight. Here we report a search for such transients (transients that fade by 5-$sigma$ in magnitude overnight) in four years of archival photometric data from the intermediate Palomar Transient Factory (iPTF). Our search criteria yielded 45 candidates. Of these, two were afterglows to GRBs that had been found in dedicated follow-up observations to triggers from the Fermi GRB Monitor (GBM). Another (iPTF14yb; Cenko et al. 2015) was a GRB afterglow discovered serendipitously. Two were spurious artifacts of reference image subtraction and one was an asteroid. The remaining 37 candidates have red stellar counterparts in external catalogs. The photometric and spectroscopic properties of the counterparts identify these transients as strong flares from M dwarfs of spectral type M3-M7 at distances of d ~ 0.15-2.1 kpc; two counterparts were already spectroscopically classified as late-type M stars. With iPTF14yb as the only confirmed relativistic outflow discovered independently of a high-energy trigger, we constrain the all-sky rate of transients that peak at m = 18 and fade by $Delta$2 mag in $Delta$3 hr to be 680 per year with a 68% confidence interval of 119-2236 per year. This implies that the rate of visible dirty fireballs is at most comparable to that of the known population of long-duration GRBs.
The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will expl oit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.
The K2 mission of the Kepler Space Telescope offers a unique possibility to examine sources of both Galactic and Extra-galactic origin with high cadence photometry. Alongside the multitude of supernovae and quasars detected within targeted galaxies, it is likely that Kepler has serendipitously observed many transients throughout K2. Such events will likely have occurred in background pixels, coincidentally surrounding science targets. Analysing the background pixels presents the possibility to conduct a high cadence survey with areas of a few square degrees per campaign. We demonstrate the capacity to independently recover key K2 transients such as KSN 2015K and SN 2018oh. With this survey, we expect to detect numerous transients and determine the first comprehensive rates for transients with lifetimes $leq1$ day.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا