ﻻ يوجد ملخص باللغة العربية
Symplectic reflection algebra $ H_{1, , u}(G)$ has a $T(G)$-dimensional space of traces whereas, when considered as a superalgebra with a natural parity, it has an $S(G)$-dimensional space of supertraces. The values of $T(G)$ and $S(G)$ depend on the symplectic reflection group $G$ and do not depend on the parameter $ u$. In this paper, the values $T(G)$ and $S(G)$ are explicitly calculated for the groups $G= Gamma wr S_N$, where $Gamma$ is a finite subgroup of $Sp(2,mathbb C)$.
For each complex number $ u$, an associative symplectic reflection algebra $mathcal H:= H_{1, u}(I_2(2m+1))$, based on the group generated by root system $I_2(2m+1)$, has an $m$-dimensional space of traces and an $(m+1)$-dimensional space of supertra
The algebra $mathcal H:= H_{1, u}(I_2(2m+1))$ of observables of the Calogero model based on the root system $I_2(2m+1)$ has an $m$-dimensional space of traces and an $(m+1)$-dimensional space of supertraces. In the preceding paper we found all values
It is shown that $A:=H_{1,eta}(G)$, the Sympectic Reflection Algebra, has $T_G$ independent traces, where $T_G$ is the number of conjugacy classes of elements without eigenvalue 1 belonging to the finite group $G$ generated by the system of symplecti
In the Coxeter group W(R) generated by the root system R, let T(R) be the number of conjugacy classes having no eigenvalue 1 and let S(R) be the number of conjugacy classes having no eigenvalue -1. The algebra H{R) of observables of the rational Calo
It is shown that H_R( u), the algebra of observables of the rational Calogero model based on the root system R, possesses T(R) independent traces, where T(R) is the number of conjugacy classes of elements without eigenvalue 1 belonging to the Coxeter