ترغب بنشر مسار تعليمي؟ اضغط هنا

The HiggsTools Handbook: Concepts and observables for deciphering the Nature of the Higgs Sector

97   0   0.0 ( 0 )
 نشر من قبل Raquel Gomez-Ambrosio
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف M. Boggia




اسأل ChatGPT حول البحث

This Report summarizes some of the activities of the HiggsTools Initial Training Network working group in the period 2015-2017. The main goal of this working group was to produce a document discussing various aspects of state-of-the-art Higgs physics at the Large Hadron Collider (LHC) in a pedagogic manner. The first part of the Report is devoted to a description of phenomenological searches for New Physics at the LHC. As the experimental measurements become more and more precise, there is a pressing need for a consistent framework in which deviations from the SM predictions can be computed precisely. We critically review the use of the k{appa}-framework, fiducial and simplified template cross sections, effective field theories, pseudo-observables and phenomenological Lagrangians. In the second part of the Report, we propose $varphi_{eta}^*$ as a new and complementary observable for studying Higgs boson production at large transverse momentum in the case where the Higgs boson decays to two photons. We make a detailed study of the phenomenology of the $varphi_{eta}^*$ variable, contrasting the behaviour with the Higgs transverse momentum distribution using a variety of theoretical tools including event generators and fixed order perturbative computations.

قيم البحث

اقرأ أيضاً

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplified template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.
This Report summarizes the results of the first 10 months activities of the LHC Higgs Cross Sections Working Group. The main goal of the working group was to present the status-of-art on Higgs Physics at the LHC integrating all new results that have appeared in the last few years. The Report is more than a mere collection of the proceedings of the general meetings. The subgroups have been working in different directions. An attempt has been made to present the first Report from these subgroups in a complete and homogeneous form. The subgroups contributions correspondingly comprise the main parts of the Report. A significant amount of work has been performed in providing higher-order corrections to the Higgs-boson cross sections and pinning down the theoretical uncertainty of the Standard Model predictions. This Report comprises explicit numerical results on total cross sections, leaving the issues of event selection cuts and differential distributions to future publications. The subjects for further study are identified.
This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002). After the discovery of a Higgs boson at the LHC in mid-2012 this report focuses on refined prediction of Standard Model (SM) Higgs phenomenology around the experimentally observed value of 125-126 GeV, refined predictions for heavy SM-like Higgs bosons as well as predictions in the Minimal Supersymmetric Standard Model and first steps to go beyond these models. The other main focus is on the extraction of the characteristics and properties of the newly discovered particle such as couplings to SM particles, spin and CP-quantum numbers etc.
The recent discovery of a 125 GeV Higgs, as well as the lack of any positive findings in searches for supersymmetry, has renewed interest in both the supersymmetric Higgs sector and fine-tuning. Here, we continue our study of the phenomenological MSS M (pMSSM), discussing the light Higgs and fine-tuning within the context of two sets of previously generated pMSSM models. We find an abundance of models with experimentally-favored Higgs masses and couplings. We investigate the decay modes of the light Higgs in these models, finding strong correlations between many final states. We then examine the degree of fine-tuning, considering contributions from each of the pMSSM parameters at up to next-to-leading-log order. In particular, we examine the fine-tuning implications for our model sets that arise from the discovery of a 125 GeV Higgs. Finally, we investigate a small subset of models with low fine-tuning and a light Higgs near 125 GeV, describing the common features of such models. We generically find a light stop and bottom with complex decay patterns into a set of light electroweak gauginos, which will make their discovery more challenging and may require novel search techniques.
The violation of CP symmetry is one of Sakharovs conditions for the matter-antimatter asymmetry of the Universe. Currently known sources of CP violation in the quark and neutrino sectors are insufficient to account for this. Is CP also violated in th e Higgs sector? Could the SM-like Higgs boson be a mixture of even and odd CP states of an extended Higgs sector? With what precision could such effects be measured at future electron-positron colliders? These questions will be discussed in the light of the latest and ongoing studies at ILC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا