ﻻ يوجد ملخص باللغة العربية
Capillary phenomena are involved in many industrial processes, especially those dealing with composite manufacturing. However, their modelling is still challenging. Therefore, a finite element setting is proposed to better investigate this complex issue. The variational formulation of a liquid-air Stokes system is established, while the solid substrate is described through boundary conditions. Expressing the weak form of Laplaces law over liquid-air, liquid-solid and air-solid interfaces, leads to a natural enforcement of the mechanical equilibrium over the wetting line, without imposing explicitly the contact angle itself. The mechanical problem is discretized by using finite elements, linear both in velocity and pressure, stabilized with a variational multiscale method, including the possibility of enrichment of the pressure space. The moving interface is captured by a Level-Set methodology, combined with a mesh adaptation technique with respect to both pressure and level-set fields. Our methodology can simulate capillary-driven flows in 2D and 3D with the desired precision: droplet spreading, droplet coalescence, capillary rise. In each case, the equilibrium state expected in terms of velocity, pressure and contact angle is reached.
In the theory of the Navier-Stokes equations, the viscous fluid in incompressible flow is modelled as a homogeneous and dense assemblage of constituent fluid particles with viscous stress proportional to rate of strain. The crucial concept of fluid f
Computational fluid dynamics is a direct modeling of physical laws in a discretized space. The basic physical laws include the mass, momentum and energy conservations, physically consistent transport process, and similar domain of dependence and infl
This paper presents flow simulation results of the EUROLIFT DLR-F11 multi-element wing configuration, obtained with a highly scalable finite element solver, PHASTA. This work was accomplished as a part of the 2nd high lift prediction workshop. In-hou
We investigate theoretically and numerically the use of the Least-Squares Finite-element method (LSFEM) to approach data-assimilation problems for the steady-state, incompressible Navier-Stokes equations. Our LSFEM discretization is based on a stress
Immiscible fluid-fluid displacement in porous media is of great importance in many engineering applications, such as enhanced oil recovery, agricultural irrigation, and geologic CO2 storage. Fingering phenomena, induced by the interface instability,