ﻻ يوجد ملخص باللغة العربية
Berkeley 59 is a nearby ($sim$1 kpc) young cluster associated with the Sh2-171 H{sc ii} region. We present deep optical observations of the central $sim$2.5$times$2.5 pc$^2$ area of the cluster, obtained with the 3.58-m Telescopio Nazionale Galileo. The $V$/($V$-$I$) color-magnitude diagram manifests a clear pre-main-sequence (PMS) population down to $sim$ 0.2 M$_odot$. Using the near-infrared and optical colors of the low-mass PMS members we derive a global extinction of A$_V$= 4 mag and a mean age of $sim$ 1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2 - 28 M$_odot$ and 0.2 - 1.5 M$_odot$ are -1.33 and -1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds is discussed. Within the observed area, we derive a total mass of $sim$ 10$^3$ M$_odot$ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more to the Trapezium cluster.
We present time-series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04 m telescope at ARIES, Nainital, we have identified 42 variables in a field of 13x13 around the cluster. The probable members of the clu
We present $UBVI_C$ CCD photometry of the young open cluster Be 59 with the aim to study the star formation scenario in the cluster. The radial extent of the cluster is found to be $sim$ 10 arcmin (2.9 pc). The interstellar extinction in the cluster
As part of a wider investigation of evolved massive stars in Galactic open clusters, we have spectroscopically identified three candidate classical Cepheids in the little-studied clusters Berkeley 51, Berkeley 55 and NGC 6603. Using new multi-epoch p
We present multiwavelength optical linear polarimetric observations of 69 stars toward the young open cluster Be 59. The observations reveal the presence of three dust layers located at the distances of sim300, sim500 and sim700 pc. The dust layers p
We present the analysis of the morphological shape of Berkeley 17, the oldest known open cluster (~10 Gyr), using a probabilistic star counting of Pan-STARRS point sources, and confirm its core-tail shape, plus an antitail, previously detected with t