ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Coding and Modulation for Large-Scale Antenna Array Based Aeronautical Communications in the Presence of Co-channel Interference

105   0   0.0 ( 0 )
 نشر من قبل Jiankang Zhang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to meet the demands of `Internet above the clouds, we propose a multiple-antenna aided adaptive coding and modulation (ACM) for aeronautical communications. The proposed ACM scheme switches its coding and modulation mode according to the distance between the communicating aircraft, which is readily available with the aid of the airborne radar or the global positioning system. We derive an asymptotic closed-form expression of the signal-to-interference-plus-noise ratio (SINR) as the number of transmitting antennas tends to infinity, in the presence of realistic co-channel interference and channel estimation errors. The achievable transmission rates and the corresponding mode-switching distance-thresholds are readily obtained based on this closed-form SINR formula. Monte-Carlo simulation results are used to validate our theoretical analysis. For the specific example of 32 transmit antennas and 4 receive antennas communicating at a 5 GHz carrier frequency and using 6 MHz bandwidth, which are reused by multiple other pairs of communicating aircraft, the proposed distance-based ACM is capable of providing as high as 65.928 Mbps data rate when the communication distance is less than 25,km.



قيم البحث

اقرأ أيضاً

We propose a regularized zero-forcing transmit precoding (RZF-TPC) aided and distance-based adaptive coding and modulation (ACM) scheme to support aeronautical communication applications, by exploiting the high spectral efficiency of large-scale ante nna arrays and link adaption. Our RZF-TPC aided and distance-based ACM scheme switches its mode according to the distance between the communicating aircraft. We derive the closed-form asymptotic signal-to-interference-plus-noise ratio (SINR) expression of the RZF-TPC for the aeronautical channel, which is Rician, relying on a non-centered channel matrix that is dominated by the deterministic line-of-sight component. The effects of both realistic channel estimation errors and of the co-channel interference are considered in the derivation of this approximate closed-form SINR formula. Furthermore, we derive the analytical expression of the optimal regularization parameter that minimizes the mean square detection error. The achievable throughput expression based on our asymptotic approximate SINR formula is then utilized as the design metric for the proposed RZF-TPC aided and distance-based ACM scheme. Monte-Carlo simulation results are presented for validating our theoretical analysis as well as for investigating the impact of the key system parameters. The simulation results closely match the theoretical results. In the specific example that two communicating aircraft fly at a typical cruising speed of 920 km/h, heading in opposite direction over the distance up to 740 km taking a period of about 24 minutes, the RZF-TPC aided and distance-based ACM is capable of transmitting a total of 77 Gigabyte of data with the aid of 64 transmit antennas and 4 receive antennas, which is significantly higher than that of our previous eigen-beamforming transmit precoding aided and distance-based ACM benchmark.
Large-scale antenna (LSA) has gained a lot of attention due to its great potential to significantly improve system throughput. In most existing works on LSA systems, orthogonal frequency division multiplexing (OFDM) is presumed to deal with frequency selectivity of wireless channels. Although LSA-OFDM is a natural evolution from multiple-input multiple-output OFDM (MIMO-OFDM), the drawbacks of LSA-OFDM are inevitable, especially when used for the uplink. In this paper, we investigate single-carrier (SC) modulation for the uplink transmission in LSA systems based on a novel waveform recovery theory, where the receiver is designed to recover the transmit waveform while the information-bearing symbols can be recovered by directly sampling the recovered waveform. The waveform recovery adopts the assumption that the antenna number is infinite and the channels at different antennas are independent. In practical environments, however, the antenna number is always finite and the channels at different antennas are also correlated when placing hundreds of antennas in a small area. Therefore, we will also analyze the impacts of such non-ideal environments.
Recently, the spatial modulation (SM) technique has been proposed for visible light communication (VLC). This paper investigates the average symbol error rate (SER) for the VLC using adaptive spatial modulation (ASM). In the system, the analysis of t he average SER is divided into two aspects: the error probability of the spatial domain and the error probability of the signal domain when the spatial domain is correctly estimated. Based on the two aspects, the theoretical expression of the average SER is derived. To further improve the system performance, an optimization problem is proposed to optimize the modulation orders on the LEDs. The ASM based and the candidate reduction (CR)-ASM based optimization algorithms are proposed to solve the problem, respectively. Numerical results show that the derived theoretical values of the average SER are quite accurate to evaluate the system performance. Moreover, compared with the existing schemes, the proposed two algorithms are better choices for VLC.
The Reconfigurable Intelligent Surface (RIS) constitutes one of the prominent technologies for the next 6-th Generation (6G) of wireless communications. It is envisioned to enhance signal coverage in cases where obstacles block the direct communicati on from Base Stations (BSs), and when high carrier frequencies are used that are sensitive to attenuation losses. In the literature, the exploitation of RISs is exclusively based on traditional coherent demodulation, which necessitates the availability of Channel State Information (CSI). Given the CSI, a multi-antenna BS or a dedicated controller computes the pre/post spatial coders and the RIS configuration. The latter tasks require significant amount of time and resources, which may not be affordable when the channel is time-varying or the CSI is not accurate enough. In this paper, we consider the uplink between a single-antenna user and a multi-antenna BS and present a novel RIS-empowered Orthogonal Frequency Division Multiplexing (OFDM) communication system based on the differential phase shift keying, which is suitable for high noise and/or mobility scenarios. Considering both an idealistic and a realistic channel model, analytical expressions for the Signal-to-Interference and Noise Ratio (SINR) and the Symbol Error Probability (SEP) of the proposed non-coherent RIS-empowered system are presented. Our extensive computer simulation results verify the accuracy of the presented analysis and showcase the proposed systems performance and superiority over coherent demodulation in different mobility and spatial correlation scenarios.
99 - Lin Liu , Guiyang Xia , Jun Zou 2020
In this paper, we make an investigation of receive antenna selection (RAS) strategies in the secure pre-coding aided spatial modulation (PSM) system with the aid of artificial noise. Due to a lack of the closed-form expression for secrecy rate (SR) i n secure PSM systems, it is hard to optimize the RAS. To address this issue, the cut-off rate is used as an approximation of the SR. Further, two low-complexity RAS schemes for maximizing SR, called Max-SR-L and Max-SR-H, are derived in the low and high signal-to-noise ratio (SNR) regions, respectively. Due to the fact that the former works well in the low SNR region but becomes worse in the medium and high SNR regions while the latter also has the similar problem, a novel RAS strategy Max-SR-A is proposed to cover all SNR regions. Simulation results show that the proposed Max-SR-H and Max-SR-L schemes approach the optimal SR performances of the exhaustive search (ES) in the high and low SNR regions, respectively. In particular, the SR performance of the proposed Max-SR-A is close to that of the optimal ES and better than that of the random method in almost all SNR regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا