ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Inverse Covariance Estimation for Chordal Structures

394   0   0.0 ( 0 )
 نشر من قبل Salar Fattahi
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the Graphical Lasso (GL), a popular optimization problem for learning the sparse representations of high-dimensional datasets, which is well-known to be computationally expensive for large-scale problems. Recently, we have shown that the sparsity pattern of the optimal solution of GL is equivalent to the one obtained from simply thresholding the sample covariance matrix, for sparse graphs under different conditions. We have also derived a closed-form solution that is optimal when the thresholded sample covariance matrix has an acyclic structure. As a major generalization of the previous result, in this paper we derive a closed-form solution for the GL for graphs with chordal structures. We show that the GL and thresholding equivalence conditions can significantly be simplified and are expected to hold for high-dimensional problems if the thresholded sample covariance matrix has a chordal structure. We then show that the GL and thresholding equivalence is enough to reduce the GL to a maximum determinant matrix completion problem and drive a recursive closed-form solution for the GL when the thresholded sample covariance matrix has a chordal structure. For large-scale problems with up to 450 million variables, the proposed method can solve the GL problem in less than 2 minutes, while the state-of-the-art methods converge in more than 2 hours.



قيم البحث

اقرأ أيضاً

Across a variety of scientific disciplines, sparse inverse covariance estimation is a popular tool for capturing the underlying dependency relationships in multivariate data. Unfortunately, most estimators are not scalable enough to handle the sizes of modern high-dimensional data sets (often on the order of terabytes), and assume Gaussian samples. To address these deficiencies, we introduce HP-CONCORD, a highly scalable optimization method for estimating a sparse inverse covariance matrix based on a regularized pseudolikelihood framework, without assuming Gaussianity. Our parallel proximal gradient method uses a novel communication-avoiding linear algebra algorithm and runs across a multi-node cluster with up to 1k nodes (24k cores), achieving parallel scalability on problems with up to ~819 billion parameters (1.28 million dimensions); even on a single node, HP-CONCORD demonstrates scalability, outperforming a state-of-the-art method. We also use HP-CONCORD to estimate the underlying dependency structure of the brain from fMRI data, and use the result to identify functional regions automatically. The results show good agreement with a clustering from the neuroscience literature.
The sparse inverse covariance estimation problem is commonly solved using an $ell_{1}$-regularized Gaussian maximum likelihood estimator known as graphical lasso, but its computational cost becomes prohibitive for large data sets. A recent line of re sults showed--under mild assumptions--that the graphical lasso estimator can be retrieved by soft-thresholding the sample covariance matrix and solving a maximum determinant matrix completion (MDMC) problem. This paper proves an extension of this result, and describes a Newton-CG algorithm to efficiently solve the MDMC problem. Assuming that the thresholded sample covariance matrix is sparse with a sparse Cholesky factorization, we prove that the algorithm converges to an $epsilon$-accurate solution in $O(nlog(1/epsilon))$ time and $O(n)$ memory. The algorithm is highly efficient in practice: we solve the associated MDMC problems with as many as 200,000 variables to 7-9 digits of accuracy in less than an hour on a standard laptop computer running MATLAB.
We consider the class of convex minimization problems, composed of a self-concordant function, such as the $logdet$ metric, a convex data fidelity term $h(cdot)$ and, a regularizing -- possibly non-smooth -- function $g(cdot)$. This type of problems have recently attracted a great deal of interest, mainly due to their omnipresence in top-notch applications. Under this emph{locally} Lipschitz continuous gradient setting, we analyze the convergence behavior of proximal Newton schemes with the added twist of a probable presence of inexact evaluations. We prove attractive convergence rate guarantees and enhance state-of-the-art optimization schemes to accommodate such developments. Experimental results on sparse covariance estimation show the merits of our algorithm, both in terms of recovery efficiency and complexity.
The prevalence of multivariate space-time data collected from monitoring networks and satellites or generated from numerical models has brought much attention to multivariate spatio-temporal statistical models, where the covariance function plays a k ey role in modeling, inference, and prediction. For multivariate space-time data, understanding the spatio-temporal variability, within and across variables, is essential in employing a realistic covariance model. Meanwhile, the complexity of generic covariances often makes model fitting very challenging, and simplified covariance structures, including symmetry and separability, can reduce the model complexity and facilitate the inference procedure. However, a careful examination of these properties is needed in real applications. In the work presented here, we formally define these properties for multivariate spatio-temporal random fields and use functional data analysis techniques to visualize them, hence providing intuitive interpretations. We then propose a rigorous rank-based testing procedure to conclude whether the simplified properties of covariance are suitable for the underlying multivariate space-time data. The good performance of our method is illustrated through synthetic data, for which we know the true structure. We also investigate the covariance of bivariate wind speed, a key variable in renewable energy, over a coastal and an inland area in Saudi Arabia.
Solving l1 regularized optimization problems is common in the fields of computational biology, signal processing and machine learning. Such l1 regularization is utilized to find sparse minimizers of convex functions. A well-known example is the LASSO problem, where the l1 norm regularizes a quadratic function. A multilevel framework is presented for solving such l1 regularized sparse optimization problems efficiently. We take advantage of the expected sparseness of the solution, and create a hierarchy of problems of similar type, which is traversed in order to accelerate the optimization process. This framework is applied for solving two problems: (1) the sparse inverse covariance estimation problem, and (2) l1-regularized logistic regression. In the first problem, the inverse of an unknown covariance matrix of a multivariate normal distribution is estimated, under the assumption that it is sparse. To this end, an l1 regularized log-determinant optimization problem needs to be solved. This task is challenging especially for large-scale datasets, due to time and memory limitations. In the second problem, the l1-regularization is added to the logistic regression classification objective to reduce overfitting to the data and obtain a sparse model. Numerical experiments demonstrate the efficiency of the multilevel framework in accelerating existing iterative solvers for both of these problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا