ﻻ يوجد ملخص باللغة العربية
Compared to the current wireless communication systems, millimeter wave (mm-Wave) promises a wide range of spectrum. As viable alternatives to existing mm-Wave channel models, various map-based channel models with different modeling methods have been widely discussed. Map-based channel models are based on a ray-tracing algorithm and include realistic channel parameters in a given map. Such parameters enable researchers to accurately evaluate novel technologies in the mm-Wave range. Diverse map-based modeling methods result in different modeling objectives, including the characteristics of channel parameters and different complexities of the modeling procedure. This article outlines an overview of map-based mm-Wave channel models and proposes a concept of how they can be utilized to integrate a hardware testbed/sounder with a software testbed/sounder. In addition, we categorize map-based channel parameters and provide guidelines for hybrid modeling. Next, we share the measurement data and the map-based channel parameters with the public. Lastly, we evaluate a machine learning-based beam selection algorithm through the shared database. We expect that the offered guidelines and the shared database will enable researchers to readily design a map-based channel model.
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional
The Terahertz band is envisioned to meet the demanding 100 Gbps data rates for 6G wireless communications. Aiming at combating the distance limitation problem with low hardware-cost, ultra-massive MIMO with hybrid beamforming is promising. However, r
We address the problem of analyzing and classifying in groups the downlink channel environment in a millimeter-wavelength cell, accounting for path loss, multipath fading, and User Equipment (UE) blocking, by employing a hybrid propagation and multip
Covert communication prevents legitimate transmission from being detected by a warden while maintaining certain covert rate at the intended user. Prior works have considered the design of covert communication over conventional low-frequency bands, bu
Fast channel estimation in millimeter-wave (mmWave) systems is a fundamental enabler of high-gain beamforming, which boosts coverage and capacity. The channel estimation stage typically involves an initial beam training process where a subset of the