ﻻ يوجد ملخص باللغة العربية
We present some experimental and simulation results that reproduces the Ostwald ripening (gas diffusion among bubbles) for air bubbles in a liquid fluid. Concerning the experiment, there it is measured the time evolution of bubbles mean radius, number of bubbles and radius size distribution. One of the main results shows that, while the number of bubbles decreases in time the bubbles mean radius increases, hence, it follows that the smaller bubbles disappear whereas the -- potentially dangerous for the diver -- larger bubbles grow up. Consequently, this effect suggests a possible contribution of the Ostwald ripening to the decompression sickness, and if so, it should be pursued its implementation to the Reduced Gradient Bubble Model (RGBM) so as to build up dive tables and computer programs for further diving tests.
The Ostwald ripening phenomenon for gas bubbles in a liquid consists mainly in gas transfer from smaller bubbles to larger bubbles. An experiment was carried out in which the Ostwald ripening for air bubbles, in a liquid fluid with some rheological p
The prediction of the lifetime of surface bubbles necessitates a better understanding of the thinning dynamics of the bubble cap. In 1959, Mysel textit{et al.} cite{mysels1959soap}, proposed that textit{marginal regeneration} i.e. the rise of patches
We study analytically the joint dispersion of Gaussian patches of salt and colloids in linear flows, and how salt gradients accelerate or delay colloid spreading by diffusiophoretic effects. Because these flows have constant gradients in space, the p
We perform molecular dynamics simulations to understand the translational and rotational diffusion of Janus nanoparticles at the interface between two immiscible fluids. Considering spherical particles with different affinity to fluid phases, both th
The present article experimentally and theoretically probes the evaporation kinetics of sessile saline droplets. Observations reveal that presence of solvated ions leads to modulated evaporation kinetics, which is further a function of surface wettab