ﻻ يوجد ملخص باللغة العربية
We will discuss the issue of Landau levels of quarks in lattice QCD in an external magnetic field. We will show that in the two-dimensional case the lowest Landau level can be identified unambiguously even if the strong interactions are turned on. Starting from this observation, we will then show how one can define a lowest Landau level in the four-dimensional case, and discuss how much of the observed effects of a magnetic field can be explained in terms of it. Our results can be used to test the validity of low-energy models of QCD that make use of the lowest-Landau-level approximation.
We present first evidence for the Landau level structure of Dirac eigenmodes in full QCD for nonzero background magnetic fields, based on first principles lattice simulations using staggered quarks. Our approach involves the identification of the low
Using numerical simulations of lattice QCD we calculate the effect of an external magnetic field on the equation of state of the quark-gluon plasma. The results are obtained using a Taylor expansion of the pressure with respect to the magnetic field
We study the influence of an external magnetic field on the deconfinement transition in two-flavour lattice QCD with physical quark charges. We use dynamical overlap fermions without any approximation such as fixed topology and perform simulations on
We study the change of the QCD spectrum of low-lying mesons in the presence of an external magnetic field using Wilson fermions in the quenched approximation. Motivated by qualitative differences observed in the spectra of overlap and Wilson fermions
The recent PVLAS experiment observed the rotation of polarization and the ellipticity when a linearly polarized laser beam passes through a transverse magnetic field. The phenomenon cannot be explained in the conventional QED. We attempt to accommoda