ترغب بنشر مسار تعليمي؟ اضغط هنا

High-brilliance betatron gamma-ray source powered by laser-accelerated electrons

132   0   0.0 ( 0 )
 نشر من قبل Julien Ferri
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent progress in laser-driven plasma acceleration now enables the acceleration of electrons to several gigaelectronvolts. Taking advantage of these novel accelerators, ultra-short, compact and spatially coherent X-ray sources called betatron radiation have been developed and applied to high-resolution imaging. However, the scope of the betatron sources is limited by a low energy efficiency and a photon energy in the 10s of kiloelectronvolt range, which for example prohibits the use of these sources for probing dense matter. Here, based on three-dimensional particle-in-cell simulations, we propose an original hybrid scheme that combines a low-density laser-driven plasma accelerator with a high-density beam-driven plasma radiator, and thereby considerably increases the photon energy and the radiated energy of the betatron source. The energy efficiency is also greatly improved, with about 1% of the laser energy transferred to the radiation, and the gamma-ray photon energy exceeds the megaelectronvolt range when using a 15 J laser pulse. This high-brilliance hybrid betatron source opens the way to a wide range of applications requiring MeV photons, such as the production of medical isotopes with photo-nuclear reactions, radiography of dense objects in the defense or industrial domains and imaging in nuclear physics.



قيم البحث

اقرأ أيضاً

Direct laser acceleration (DLA) of electrons in a plasma of near critical electron density (NCD) and associated synchrotron-like radiation are discussed for moderate relativistic laser intensity (the normalized laser amplitude $a_0$ $leq$ 4.3) and ps -long pulse. This regime is typical for kJ PW-class laser facilities designed for high energy density research. Currently, in experiments at the PHELX laser it was demonstrated that interaction of 10$^{19}$ W/cm$^{2}$ sub-ps laser pulse with sub-mm long NCD plasma results in generation of high-current well-directed super-ponderomotive electrons with effective temperature that is 10$times$ higher than the ponderomotive potential [O. Rosmej et al., PPCF 62, 115024 (2020)]. Three-dimensional Particle-In-Cell simulations provided a good agreement with the measured electron energy distribution and were used in the current work to study synchrotron radiation of the DLA accelerated electrons. The resulting x-ray spectrum with a critical energy of 5 keV reveals an ultra-high photon number of 7$times$10$^{11}$ in the 1-30 keV photon energy range at the focused laser energy of 20 J. Numerical simulations of a betatron x-ray phasecontrast imaging based on the DLA process for the parameters of a PHELIX laser is presented. The results are of interest for applications in high energy density (HED) experiments, which require a picosecond x-ray pulse and a high photon flux.
268 - S. Corde , K. Ta Phuoc , R. Fitour 2011
The features of Betatron x-ray emission produced in a laser-plasma accelerator are closely linked to the properties of the relativistic electrons which are at the origin of the radiation. While in interaction regimes explored previously the source wa s by nature unstable, following the fluctuations of the electron beam, we demonstrate in this Letter the possibility to generate x-ray Betatron radiation with controlled and reproducible features, allowing fine studies of its properties. To do so, Betatron radiation is produced using monoenergetic electrons with tunable energies from a laser-plasma accelerator with colliding pulse injection [J. Faure et al., Nature (London) 444, 737 (2006)]. The presented study provides evidence of the correlations between electrons and x-rays, and the obtained results open significant perspectives toward the production of a stable and controlled femtosecond Betatron x-ray source in the keV range.
Development of x-ray phase contrast imaging applications with a laboratory scale source have been limited by the long exposure time needed to obtain one image. We demonstrate, using the Betatron x-ray radiation produced when electrons are accelerated and wiggled in the laser-wakefield cavity, that a high quality phase contrast image of a complex object (here, a bee), located in air, can be obtained with a single laser shot. The Betatron x-ray source used in this proof of principle experiment has a source diameter of 1.7 microns and produces a synchrotron spectrum with critical energy E_c=12.3 +- 2.5 keV and 10^9 photons per shot in the whole spectrum.
We investigate the generation of twin $gamma$ ray beams in collision of an ultrahigh intensity laser pulse with a laser wakefield accelerated electron beam by using particle-in-cell simulation. We consider the composed target of a homogeneous underde nse preplasma in front of an ultrathin solid foil. The electrons in the preplasma are trapped and accelerated by the wakefield. When the laser pulse is reflected by the thin solid foil, the wakefield accelerated electrons continue to move forward and passing through the foil almost without the influence of the reflected laser pulse and the foil. Consequently, two groups of $gamma$ ray flashes, with tunable time delay and energy, are generated by the wakefield accelerated electron beam interacting with the reflected laser pulse from the foil as well as another counter propagating petawatt laser pulse in the behind the foil. The dependence of the $gamma$ photon emission on the preplasma densities, driving laser polarization and the foil are studied.
Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particul arly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 130 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV/m. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا