ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotic separation between solutions of Caputo fractional stochastic differential equations

124   0   0.0 ( 0 )
 نشر من قبل Hoang The Tuan
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a temporally weighted norm we first establish a result on the global existence and uniqueness of solutions for Caputo fractional stochastic differential equations of order $alphain(frac{1}{2},1)$ whose coefficients satisfy a standard Lipschitz condition. For this class of systems we then show that the asymptotic distance between two distinct solutions is greater than $t^{-frac{1-alpha}{2alpha}-eps}$ as $t to infty$ for any $eps>0$. As a consequence, the mean square Lyapunov exponent of an arbitrary non-trivial solution of a bounded linear Caputo fractional stochastic differential equation is always non-negative.

قيم البحث

اقرأ أيضاً

We present some distinct asymptotic properties of solutions to Caputo fractional differential equations (FDEs). First, we show that the non-trivial solutions to a FDE can not converge to the fixed points faster than $t^{-alpha}$, where $alpha$ is the order of the FDE. Then, we introduce the notion of Mittag-Leffler stability which is suitable for systems of fractional-order. Next, we use this notion to describe the asymptotical behavior of solutions to FDEs by two approaches: Lyapunovs first method and Lyapunovs second method. Finally, we give a discussion on the relation between Lipschitz condition, stability and speed of decay, separation of trajectories to scalar FDEs.
It is shown that the attractor of an autonomous Caputo fractional differential equation of order $alphain(0,1)$ in $mathbb{R}^d$ whose vector field has a certain triangular structure and satisfies a smooth condition and dissipativity condition is ess entially the same as that of the ordinary differential equation with the same vector field. As an application, we establish several one-parameter bifurcations for scalar fractional differential equations including the saddle-node and the pichfork bifurcations. The proof uses a result of N. D. Cong and H.T. Tuan, Generation of nonlocal fractional dynamical systems by fractional differential equations. Journal of Integral Equations and Applications, 29 (2017), 1-24 which shows that no two solutions of such a Caputo FDE can intersect in finite time
An autonomous Caputo fractional differential equation of order $alphain(0,1)$ in $mathbb{R}^d$ whose vector field satisfies a global Lipschitz condition is shown to generate a semi-dynamical system in the function space $mathfrak{C}$ of continuous fu nctions $f:R^+rightarrow R^d$ with the topology uniform convergence on compact subsets. This contrasts with a recent result of Cong & Tuan cite{cong}, which showed that such equations do not, in general, generate a dynamical system on the space $mathbb{R}^d$.
This manuscript investigates the existence and uniqueness of solutions to the first order fractional anti-periodic boundary value problem involving Caputo-Katugampola (CK) derivative. A variety of tools for analysis this paper through the integral eq uivalent equation of the given problem, fixed point theorems of Leray--Schauder, Krasnoselskiis, and Banach are used. Examples of the obtained results are also presented.
In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation syst ems. Next, a representation of solutions of homogeneous linear multi-order fractional differential equation systems in series form is provided. Finally, we give characteristics regarding the asymptotic behavior of solutions to some classes of linear multi-order fractional differential equation systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا