ﻻ يوجد ملخص باللغة العربية
Using a temporally weighted norm we first establish a result on the global existence and uniqueness of solutions for Caputo fractional stochastic differential equations of order $alphain(frac{1}{2},1)$ whose coefficients satisfy a standard Lipschitz condition. For this class of systems we then show that the asymptotic distance between two distinct solutions is greater than $t^{-frac{1-alpha}{2alpha}-eps}$ as $t to infty$ for any $eps>0$. As a consequence, the mean square Lyapunov exponent of an arbitrary non-trivial solution of a bounded linear Caputo fractional stochastic differential equation is always non-negative.
We present some distinct asymptotic properties of solutions to Caputo fractional differential equations (FDEs). First, we show that the non-trivial solutions to a FDE can not converge to the fixed points faster than $t^{-alpha}$, where $alpha$ is the
It is shown that the attractor of an autonomous Caputo fractional differential equation of order $alphain(0,1)$ in $mathbb{R}^d$ whose vector field has a certain triangular structure and satisfies a smooth condition and dissipativity condition is ess
An autonomous Caputo fractional differential equation of order $alphain(0,1)$ in $mathbb{R}^d$ whose vector field satisfies a global Lipschitz condition is shown to generate a semi-dynamical system in the function space $mathfrak{C}$ of continuous fu
This manuscript investigates the existence and uniqueness of solutions to the first order fractional anti-periodic boundary value problem involving Caputo-Katugampola (CK) derivative. A variety of tools for analysis this paper through the integral eq
In this paper, we investigate some aspects of the qualitative theory for multi-order fractional differential equation systems. First, we obtain a fundamental result on the existence and uniqueness for multi-order fractional differential equation syst