ﻻ يوجد ملخص باللغة العربية
In this work, we theoretically find that coherent perfect absorption (CPA) and laser modes can be realized in a two-dimensional cylindrical structure composed of conjugate metamaterials (CMs). The required phase factors of CMs for achieving CPA and laser modes are determined by the geometric size of the CM cylinder, which is a unique feature compared with other non-Hermitian optical systems. Based on this property, we also demonstrate that CPA and laser modes can exist simultaneously in a CM cylinder with an extremely large size, where the excitations of CPA and laser modes depend on the angular momentum of coherent incident light. Therefore, compared with the well known parity time symmetry, our work opens up a brand-new path to obtaining CPA and laser modes, and is a significant advance in non-Hermitian optical systems.
Conjugate metamaterials, in which the permittivity and the permeability are complex conjugates of each other, possess the elements of loss and gain simultaneously. By employing a conjugate metamaterial with a purely imaginary form, we propose a mecha
Coherent perfect absorber (CPA) was proposed as the time-reversed counterpart to laser: a resonator containing lossy medium instead of gain medium can absorb the coherent optical fields completely. Here, we exploit a monolayer graphene to realize the
We propose a tunable coherent perfect absorber based on ultrathin nonlinear metasurfaces. The nonlinear metasurface is made of plasmonic nanoantennas coupled to an epsilon-near-zero material with a large optical nonlinearity. The coherent perfect abs
Coherent perfect absorption (CPA) refers to interferometrically induced complete absorption of incident light by a partial absorber independently of its intrinsic absorption (which may be vanishingly small) or its thickness. CPA is typically realized
Engineering the transport of radiation and its interaction with matter using non-Hermiticity, particularly through spectral degeneracies known as exceptional points(EPs), is an emerging field that has both fundamental and practical implications. Chir