ترغب بنشر مسار تعليمي؟ اضغط هنا

Interval vs. Point Temporal Logic Model Checking: an Expressiveness Comparison

63   0   0.0 ( 0 )
 نشر من قبل Alberto Molinari
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last years, model checking with interval temporal logics is emerging as a viable alternative to model checking with standard point-based temporal logics, such as LTL, CTL, CTL*, and the like. The behavior of the system is modeled by means of (finite) Kripke structures, as usual. However, while temporal logics which are interpreted point-wise describe how the system evolves state-by-state, and predicate properties of system states, those which are interpreted interval-wise express properties of computation stretches, spanning a sequence of states. A proposition letter is assumed to hold over a computation stretch (interval) if and only if it holds over each component state (homogeneity assumption). A natural question arises: is there any advantage in replacing points by intervals as the primary temporal entities, or is it just a matter of taste? In this paper, we study the expressiveness of Halpern and Shohams interval temporal logic (HS) in model checking, in comparison with those of LTL, CTL, and CTL*. To this end, we consider three semantic variants of HS: the state-based one, introduced by Montanari et al., that allows time to branch both in the past and in the future, the computation-tree-based one, that allows time to branch in the future only, and the trace-based variant, that disallows time to branch. These variants are compared among themselves and to the aforementioned standard logics, getting a complete picture. In particular, we show that HS with trace-based semantics is equivalent to LTL (but at least exponentially more succinct), HS with computation-tree-based semantics is equivalent to finitary CTL*, and HS with state-based semantics is incomparable with all of them (LTL, CTL, and CTL*).



قيم البحث

اقرأ أيضاً

In the last decades much research effort has been devoted to extending the success of model checking from the traditional field of finite state machines and vario
In this paper the reversibility of executable Interval Temporal Logic (ITL) specifications is investigated. ITL allows for the reasoning about systems in terms of behaviours which are represented as non-empty sequences of states. It allows for the sp ecification of systems at different levels of abstraction. At a high level this specification is in terms of properties, for instance safety and liveness properties. At concrete level one can specify a system in terms of programming constructs. One can execute these concrete specification, i.e., test and simulate the behaviour of the system. In this paper we will formalise this notion of executability of ITL specifications. ITL also has a reflection operator which allows for the reasoning about reversed behaviours. We will investigate the reversibility of executable ITL specifications, i.e., how one can use this reflection operator to reverse the concrete behaviour of a particular system.
Whereas standard treatments of temporal logic are adequate for closed systems, having no run-time interactions with their environment, they fall short for reactive systems, interacting with their environments through synchronisation of actions. This paper introduces reactive temporal logic, a form of temporal logic adapted for the study of reactive systems. I illustrate its use by applying it to formulate definitions of a fair scheduler, and of a correct mutual exclusion protocol. Previous definitions of these concepts were conceptually much more involved or less precise, leading to debates on whether or not a given protocol satisfies the implicit requirements.
We show that metric temporal logic can be viewed as linear time-invariant filtering, by interpreting addition, multiplication, and their neutral elements, over the (max,min,0,1) idempotent dioid. Moreover, by interpreting these operators over the fie ld of reals (+,*,0,1), one can associate various quantitative semantics to a metric-temporal-logic formula, depending on the filters kernel used: square, rounded-square, Gaussian, low-pass, band-pass, or high-pass. This remarkable connection between filtering and metric temporal logic allows us to freely navigate between the two, and to regard signal-feature detection as logical inference. To the best of our knowledge, this connection has not been established before. We prove that our qualitative, filtering semantics is identical to the classical MTL semantics. We also provide a quantitative semantics for MTL, which measures the normalized, maximum number of times a formula is satisfied within its associated kernel, by a given signal. We show that this semantics is sound, in the sense that, if its measure is 0, then the formula is not satisfied, and it is satisfied otherwise. We have implemented both of our semantics in Matlab, and illustrate their properties on various formulas and signals, by plotting their computed measures.
105 - A. Bernasconi 2017
This paper describes in detail the example introduced in the preliminary evaluation of THRIVE. Specifically, it evaluates THRIVE over an abstraction of the ground model proposed for a critical component belonging to a medical device used by optometrists and ophtalmologits to dected visual problems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا